activation.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.nn import Layer

17 18
from .. import functional as F

19 20 21 22 23
__all__ = []


class ReLU(Layer):
    """
U
ustiniankw 已提交
24

25
    Sparse ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
43 44 45

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
46
            relu = paddle.sparse.nn.ReLU()
47 48
            out = relu(sparse_x)
            # [0., 0., 1.]
U
ustiniankw 已提交
49

50 51 52
    """

    def __init__(self, name=None):
53
        super().__init__()
54 55 56 57 58 59 60 61
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
62 63 64


class Softmax(Layer):
65
    r"""
U
ustiniankw 已提交
66

67
    Sparse Softmax Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
68 69

    Note:
70
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
71 72
        by row (axis=-1).

73 74
    Transform x to dense matix, and :math:`i` is row index, :math:`j` is column index.
    If axis=-1, We have:
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            paddle.seed(2022)

            mask = paddle.rand((3, 4)) < 0.7
            x = paddle.rand((3, 4)) * mask
            print(x)
            # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.08325022, 0.27030438, 0.        , 0.83883715],
            #         [0.        , 0.95856029, 0.24004589, 0.        ],
            #         [0.14500992, 0.17088132, 0.        , 0.        ]])

            csr = x.to_sparse_csr()
            print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.08325022, 0.27030438, 0.83883715, 0.95856029, 0.24004589,
            #                0.14500992, 0.17088132])
110

111
            softmax = paddle.sparse.nn.Softmax()
112
            out = softmax(csr)
113 114 115 116 117 118
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.23070428, 0.27815846, 0.49113727, 0.67227983, 0.32772022,
            #                0.49353254, 0.50646752])
119 120 121
    """

    def __init__(self, axis=-1, name=None):
122
        super().__init__()
123 124 125 126 127 128 129 130 131
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
132 133 134 135


class ReLU6(Layer):
    """
U
ustiniankw 已提交
136

137 138 139 140
    Sparse ReLU6 Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

141
        ReLU6(x) = min(max(0,x), 6)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
158
            relu6 = paddle.sparse.nn.ReLU6()
159
            out = relu6(sparse_x)
U
ustiniankw 已提交
160

161 162 163
    """

    def __init__(self, name=None):
164
        super().__init__()
165 166 167 168 169 170 171 172 173 174 175
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


class LeakyReLU(Layer):
176
    r"""
U
ustiniankw 已提交
177

178
    Sparse Leaky ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    .. math::

        LeakyReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

    Parameters:
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
207
            leaky_relu = paddle.sparse.nn.LeakyReLU(0.5)
208
            out = leaky_relu(sparse_x)
U
ustiniankw 已提交
209

210 211 212
    """

    def __init__(self, negative_slope=0.01, name=None):
213
        super().__init__()
214 215 216 217 218 219 220 221 222
        self._negative_slope = negative_slope
        self._name = name

    def forward(self, x):
        return F.leaky_relu(x, self._negative_slope, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str