sequence_project_op.h 13.9 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/math_function.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
C
chengduoZH 已提交
30 31 32 33 34 35 36 37 38 39 40
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class SequenceProjectKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    out->mutable_data<T>(context.GetPlace());
41 42 43 44 45 46

    // Because if padding_trainable is false, padding data should be zeros.
    auto temp = framework::EigenVector<T>::Flatten(*out);
    temp.device(context.GetEigenDevice<Place>()) =
        temp.constant(static_cast<T>(0));

C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    bool padding_trainable = context.Attr<bool>("padding_trainable");
    int context_stride = context.Attr<int>("context_stride");

    // InferShape by in_lod
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");
    auto lod_level_0 = in->lod()[0];
58 59 60 61
    int64_t input_width = in->dims()[1];
    int64_t output_width = out->dims()[1];
    int64_t padding_width = 0;
    PADDLE_ENFORCE(input_width * context_length == output_width,
C
chengduoZH 已提交
62 63 64 65 66 67 68
                   "Input size and pooling size should be consistent.");

    const LoDTensor* padding_data = nullptr;
    if (padding_trainable) {
      padding_data = context.Input<LoDTensor>("PaddingData");
      PADDLE_ENFORCE_EQ(padding_data->dims().size(), 2UL,
                        "Only support one level sequence now.");
69 70
      padding_width = padding_data->dims()[1];
      PADDLE_ENFORCE(padding_width == input_width,
C
chengduoZH 已提交
71 72 73 74 75
                     "Input size and pooling size should be consistent.");
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
76 77
    int sequence_height, sequence_width;
    int input_row_begin, input_row_end;
C
chengduoZH 已提交
78 79 80 81 82 83

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        im2col_ocf;

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
84 85 86 87 88
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
89 90
      Tensor out_t = out->Slice(static_cast<int>(lod_level_0[i]),
                                static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
91

92 93 94
      sequence_height = static_cast<int>(out_t.dims()[0]);
      sequence_width = static_cast<int>(in->dims()[1]);

C
chengduoZH 已提交
95 96 97
      std::vector<int64_t> output_shape(
          {sequence_height, 1, 1, context_length,
           sequence_width});  // output_height, output_width,
98
      // input_channels, filter_height, filter_width
C
chengduoZH 已提交
99
      out_t.Resize(framework::make_ddim(output_shape));
100 101

      if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
102
        Tensor in_t = in->Slice(input_row_begin, input_row_end);
103 104 105 106 107
        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
108
        im2col_ocf(context.device_context(), in_t, out_t,
C
chengduoZH 已提交
109 110
                   /*stride_height*/ context_stride, /*stride_width*/ 0, up_pad,
                   down_pad);
111 112 113 114 115 116 117 118 119 120 121 122 123 124
      }

      if (padding_trainable) {
        // add up trainable data
        out_t.Resize(framework::make_ddim(
            {sequence_height * context_length, sequence_width}));

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
125 126 127
            Tensor out_t_sub = out_t.Slice(k * context_length,
                                           k * context_length + padding_size);
            Tensor w_sub = padding_data->Slice(k, k + padding_size);
128 129 130 131
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(place) = w_sub_e;
C
chengduoZH 已提交
132
          }
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
C
chengduoZH 已提交
152
            }
153 154
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
155
            Tensor out_t_sub = out_t.Slice(
156 157
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
158
            Tensor w_sub = padding_data->Slice(
159 160 161 162
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(place) = w_sub_e;
C
chengduoZH 已提交
163 164 165
          }
        }
      }
166 167
      out_t.Resize(framework::make_ddim(
          {sequence_height, context_length * sequence_width}));
C
chengduoZH 已提交
168 169 170 171 172 173 174 175 176 177
    }
  }
};

template <typename Place, typename T>
class SequenceProjectGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
178 179
    auto* padding_data_g =
        context.Output<LoDTensor>(framework::GradVarName("PaddingData"));
180
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
181 182 183 184 185
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    bool padding_trainable = context.Attr<bool>("padding_trainable");
186
    int context_stride = context.Attr<int>("context_stride");
C
chengduoZH 已提交
187 188

    // InferShape by in_lod
189
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
190
                      "Only support one level sequence now.");
191
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
192 193

    int64_t input_width = in->dims()[1];
C
chengduoZH 已提交
194 195
    int64_t output_width = out_g->dims()[1];
    int64_t padding_width = 0;
C
chengduoZH 已提交
196

C
chengduoZH 已提交
197 198 199 200 201
    PADDLE_ENFORCE(input_width * context_length == output_width,
                   "Input size and pooling size should be consistent.");

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
202 203
    int sequence_height, sequence_width;
    int input_row_begin, input_row_end;
C
chengduoZH 已提交
204

C
chengduoZH 已提交
205 206
    sequence_width = static_cast<int>(in->dims()[1]);

C
chengduoZH 已提交
207 208 209 210
    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        col2im_ocf;

C
chengduoZH 已提交
211 212 213 214
    if (in_g) {
      in_g->mutable_data<T>(context.GetPlace());
      math::SetConstant<Place, T> functor;
      functor(context.device_context(), in_g, 0);
215

C
chengduoZH 已提交
216 217 218 219 220 221
      for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
        input_row_begin =
            (context_start > 0)
                ? static_cast<int>(lod_g_level_0[i]) + context_start
                : static_cast<int>(lod_g_level_0[i]);
        input_row_end = static_cast<int>(lod_g_level_0[i + 1]);
C
chengduoZH 已提交
222

C
chengduoZH 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        Tensor out_g_t = out_g->Slice(static_cast<int>(lod_g_level_0[i]),
                                      static_cast<int>(lod_g_level_0[i + 1]));

        sequence_height = static_cast<int>(out_g_t.dims()[0]);

        if (input_row_begin < input_row_end) {
          Tensor in_t = in_g->Slice(input_row_begin, input_row_end);

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_g_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

          col2im_ocf(context.device_context(), in_t, out_g_t,
                     /*stride_height*/ context_stride, /*stride_width*/ 0,
                     up_pad, down_pad);
        }
        out_g_t.Resize(framework::make_ddim(
            {sequence_height, context_length * sequence_width}));
      }
    }

    if (padding_trainable && padding_data_g) {
      padding_data_g->mutable_data<T>(context.GetPlace());
      PADDLE_ENFORCE_EQ(padding_data_g->dims().size(), 2UL,
                        "Only support one level sequence now.");
      padding_width = padding_data_g->dims()[1];
      PADDLE_ENFORCE(padding_width == input_width,
                     "Input size and pooling size should be consistent.");
      math::SetConstant<Place, T> functor;
      functor(context.device_context(), padding_data_g, 0);

      for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
        input_row_begin =
            (context_start > 0)
                ? static_cast<int>(lod_g_level_0[i]) + context_start
                : static_cast<int>(lod_g_level_0[i]);
        input_row_end = static_cast<int>(lod_g_level_0[i + 1]);

        Tensor out_g_t = out_g->Slice(static_cast<int>(lod_g_level_0[i]),
                                      static_cast<int>(lod_g_level_0[i + 1]));

        sequence_height = static_cast<int>(out_g_t.dims()[0]);
272 273 274 275 276 277 278 279 280 281 282 283

        out_g_t.Resize(framework::make_ddim(
            {sequence_height * context_length, sequence_width}));

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad,
              static_cast<int>(lod_g_level_0[i + 1] - lod_g_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
284 285 286
            Tensor out_t_sub = out_g_t.Slice(k * context_length,
                                             k * context_length + padding_size);
            Tensor w_sub = padding_data_g->Slice(k, k + padding_size);
287 288 289 290
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            w_sub_e.device(place) = w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
291
          }
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
C
chengduoZH 已提交
311
            }
312 313
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
314
            Tensor out_t_sub = out_g_t.Slice(
315 316
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
317
            Tensor w_sub = padding_data_g->Slice(
318 319 320 321
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            w_sub_e.device(place) = w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
322 323
          }
        }
C
chengduoZH 已提交
324 325
        out_g_t.Resize(framework::make_ddim(
            {sequence_height, context_length * sequence_width}));
326
      }
C
chengduoZH 已提交
327 328 329 330 331 332
    }
  }
};

}  // namespace operators
}  // namespace paddle