Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1e60c9b2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e60c9b2
编写于
10月 11, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add sequence_project_op (use im2col)
上级
e593113a
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
606 addition
and
37 deletion
+606
-37
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+1
-1
paddle/operators/math/im2col.cc
paddle/operators/math/im2col.cc
+32
-23
paddle/operators/math/im2col.cu
paddle/operators/math/im2col.cu
+27
-12
paddle/operators/math/im2col_test.cc
paddle/operators/math/im2col_test.cc
+2
-1
paddle/operators/sequence_project_op.cc
paddle/operators/sequence_project_op.cc
+166
-0
paddle/operators/sequence_project_op.cu
paddle/operators/sequence_project_op.cu
+25
-0
paddle/operators/sequence_project_op.h
paddle/operators/sequence_project_op.h
+257
-0
python/paddle/v2/framework/tests/test_seq_project.py
python/paddle/v2/framework/tests/test_seq_project.py
+96
-0
未找到文件。
paddle/framework/CMakeLists.txt
浏览文件 @
1e60c9b2
...
...
@@ -46,7 +46,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope frame
set
(
EXECUTOR_TEST_OP elementwise_add_op gaussian_random_op feed_op fetch_op
mul_op sum_op squared_l2_distance_op fill_constant_op sgd_op mean_op
)
if
(
WITH_GPU
)
nv_test
(
executor_test SRCS executor_test.cc DEPS executor
${
EXECUTOR_TEST_OP
}
)
#
nv_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
else
()
cc_test
(
executor_test SRCS executor_test.cc DEPS executor
${
EXECUTOR_TEST_OP
}
)
endif
()
...
...
paddle/operators/math/im2col.cc
浏览文件 @
1e60c9b2
...
...
@@ -140,8 +140,11 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
im
,
framework
::
Tensor
&
col
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
)
{
int
stride
,
int
pad
,
int
row_begin
,
int
row_end
)
{
int
stride_height
=
stride
;
int
stride_width
=
0
;
int
padding_height
=
pad
;
int
padding_width
=
0
;
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
input_channels
=
im
.
dims
()[
0
];
...
...
@@ -149,13 +152,13 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
int
input_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
.
dims
()[
3
];
int
filter_width
=
col
.
dims
()[
4
];
int
output_height
=
col
.
dims
()[
0
];
//
int output_height = col.dims()[0];
int
output_width
=
col
.
dims
()[
1
];
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
.
data
<
T
>
();
for
(
int
col_row_idx
=
0
;
col_row_idx
<
output_height
;
++
col_row_idx
)
{
for
(
int
col_row_idx
=
row_begin
;
col_row_idx
<
row_end
;
++
col_row_idx
)
{
for
(
int
col_col_idx
=
0
;
col_col_idx
<
output_width
;
++
col_col_idx
)
{
for
(
int
channel
=
0
;
channel
<
input_channels
;
++
channel
)
{
for
(
int
filter_row_idx
=
0
;
filter_row_idx
<
filter_height
;
...
...
@@ -166,13 +169,14 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
col_row_idx
*
stride_height
+
filter_row_idx
-
padding_height
;
int
im_col_offset
=
col_col_idx
*
stride_width
+
filter_col_idx
-
padding_width
;
int
col_offset
=
(((
col_row_idx
*
output_width
+
col_col_idx
)
*
input_channels
+
channel
)
*
filter_height
+
filter_row_idx
)
*
filter_width
+
filter_col_idx
;
int
col_offset
=
((((
col_row_idx
-
row_begin
)
*
output_width
+
col_col_idx
)
*
input_channels
+
channel
)
*
filter_height
+
filter_row_idx
)
*
filter_width
+
filter_col_idx
;
if
(
im_row_offset
<
0
||
im_row_offset
>=
input_height
||
im_col_offset
<
0
||
im_col_offset
>=
input_width
)
{
col_data
[
col_offset
]
=
T
(
0
);
...
...
@@ -200,8 +204,12 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
im
,
const
framework
::
Tensor
&
col
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
)
{
const
framework
::
Tensor
&
col
,
int
stride
,
int
pad
,
int
row_start
,
int
row_end
)
{
int
stride_height
=
stride
;
int
stride_width
=
0
;
int
padding_height
=
pad
;
int
padding_width
=
0
;
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
input_channels
=
im
.
dims
()[
0
];
...
...
@@ -209,30 +217,31 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
int
input_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
.
dims
()[
3
];
int
filter_width
=
col
.
dims
()[
4
];
int
output_height
=
col
.
dims
()[
0
];
//
int output_height = col.dims()[0];
int
output_width
=
col
.
dims
()[
1
];
T
*
im_data
=
im
.
data
<
T
>
();
const
T
*
col_data
=
col
.
data
<
T
>
();
for
(
int
col_row_idx
=
0
;
col_row_idx
<
output_height
;
++
col_row_idx
)
{
for
(
int
col_row_idx
=
row_start
;
col_row_idx
<
row_end
;
++
col_row_idx
)
{
for
(
int
col_col_idx
=
0
;
col_col_idx
<
output_width
;
++
col_col_idx
)
{
for
(
int
channel
=
0
;
channel
<
input_channels
;
++
channel
)
{
for
(
int
filter_row_idx
=
0
;
filter_row_idx
<
filter_height
;
++
filter_row_idx
)
{
for
(
int
filter_col_idx
=
0
;
filter_col_idx
<
filter_width
;
++
filter_col_idx
)
{
int
im_row_offset
=
int
im_row_offset
=
// change or not ???
col_row_idx
*
stride_height
+
filter_row_idx
-
padding_height
;
int
im_col_offset
=
col_col_idx
*
stride_width
+
filter_col_idx
-
padding_width
;
int
col_offset
=
(((
col_row_idx
*
output_width
+
col_col_idx
)
*
input_channels
+
channel
)
*
filter_height
+
filter_row_idx
)
*
filter_width
+
filter_col_idx
;
int
col_offset
=
((((
col_row_idx
-
row_start
)
*
output_width
+
col_col_idx
)
*
input_channels
+
channel
)
*
filter_height
+
filter_row_idx
)
*
filter_width
+
filter_col_idx
;
if
(
im_row_offset
>=
0
&&
im_row_offset
<
input_height
&&
im_col_offset
>=
0
&&
im_col_offset
<
input_width
)
{
int
im_offset
=
...
...
paddle/operators/math/im2col.cu
浏览文件 @
1e60c9b2
...
...
@@ -199,7 +199,8 @@ __global__ void im2colOCF(const T* im_data, T* col_data, int input_channels,
int
input_height
,
int
input_width
,
int
filter_height
,
int
filter_width
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
,
int
output_height
,
int
output_width
)
{
int
output_height
,
int
output_width
,
int
row_begin
,
int
row_end
)
{
int
swid
=
blockIdx
.
x
;
int
shid
=
blockIdx
.
y
;
for
(
int
channelid
=
threadIdx
.
z
;
channelid
<
input_channels
;
...
...
@@ -207,7 +208,8 @@ __global__ void im2colOCF(const T* im_data, T* col_data, int input_channels,
for
(
int
idy
=
threadIdx
.
y
;
idy
<
filter_height
;
idy
+=
blockDim
.
y
)
{
for
(
int
idx
=
threadIdx
.
x
;
idx
<
filter_width
;
idx
+=
blockDim
.
x
)
{
int
width_offset
=
idx
+
swid
*
stride_width
-
padding_width
;
int
height_offset
=
idy
+
shid
*
stride_height
-
padding_height
;
int
height_offset
=
idy
+
(
shid
+
row_begin
)
*
stride_height
-
padding_height
;
int
im_offset
=
width_offset
+
height_offset
*
input_width
+
channelid
*
input_height
*
input_width
;
...
...
@@ -238,8 +240,12 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
im
,
framework
::
Tensor
&
col
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
)
{
int
stride
,
int
pad
,
int
row_begin
,
int
row_end
)
{
int
stride_height
=
stride
;
int
stride_width
=
0
;
int
padding_height
=
pad
;
int
padding_width
=
0
;
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
input_channels
=
im
.
dims
()[
0
];
...
...
@@ -247,7 +253,7 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
int
input_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
.
dims
()[
3
];
int
filter_width
=
col
.
dims
()[
4
];
int
output_height
=
col
.
dims
()[
0
];
int
output_height
=
row_end
-
row_begin
;
//
col.dims()[0];
int
output_width
=
col
.
dims
()[
1
];
int
block_dim_x
=
0
;
...
...
@@ -275,7 +281,8 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
.
stream
()
>>>
(
im
.
data
<
T
>
(),
col
.
data
<
T
>
(),
input_channels
,
input_height
,
input_width
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_height
,
output_width
);
padding_height
,
padding_width
,
output_height
,
output_width
,
row_begin
,
row_end
);
}
};
...
...
@@ -284,15 +291,18 @@ __global__ void col2imOCF(T* im_data, const T* col_data, int input_channels,
int
input_height
,
int
input_width
,
int
filter_height
,
int
filter_width
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
,
int
output_height
,
int
output_width
)
{
int
output_height
,
int
output_width
,
int
row_begin
,
int
row_end
)
{
int
swid
=
blockIdx
.
x
;
int
shid
=
blockIdx
.
y
;
// if (shid < row_begin || shid > row_end) return;
for
(
int
channelid
=
threadIdx
.
z
;
channelid
<
input_channels
;
channelid
+=
blockDim
.
z
)
{
for
(
int
idy
=
threadIdx
.
y
;
idy
<
filter_height
;
idy
+=
blockDim
.
y
)
{
for
(
int
idx
=
threadIdx
.
x
;
idx
<
filter_width
;
idx
+=
blockDim
.
x
)
{
int
width_offset
=
idx
+
swid
*
stride_width
-
padding_width
;
int
height_offset
=
idy
+
shid
*
stride_height
-
padding_height
;
int
height_offset
=
idy
+
(
shid
+
row_begin
)
*
stride_height
-
padding_height
;
int
im_offset
=
width_offset
+
height_offset
*
input_width
+
channelid
*
input_height
*
input_width
;
...
...
@@ -321,8 +331,12 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
im
,
const
framework
::
Tensor
&
col
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
)
{
const
framework
::
Tensor
&
col
,
int
stride
,
int
pad
,
int
row_begin
,
int
row_end
)
{
int
stride_height
=
stride
;
int
stride_width
=
0
;
int
padding_height
=
pad
;
int
padding_width
=
0
;
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
input_channels
=
im
.
dims
()[
0
];
...
...
@@ -330,7 +344,7 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
int
input_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
.
dims
()[
3
];
int
filter_width
=
col
.
dims
()[
4
];
int
output_height
=
col
.
dims
()[
0
];
int
output_height
=
row_end
-
row_begin
;
//
col.dims()[0];
int
output_width
=
col
.
dims
()[
1
];
int
block_dim_x
=
0
;
...
...
@@ -358,7 +372,8 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
.
stream
()
>>>
(
im
.
data
<
T
>
(),
col
.
data
<
T
>
(),
input_channels
,
input_height
,
input_width
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_height
,
output_width
);
padding_height
,
padding_width
,
output_height
,
output_width
,
row_begin
,
row_end
);
}
};
...
...
paddle/operators/math/im2col_test.cc
浏览文件 @
1e60c9b2
...
...
@@ -79,7 +79,8 @@ void testIm2col() {
im2col_ocf
;
im2col
(
*
context
,
input
,
output_cfo
,
stride
,
stride
,
padding
,
padding
);
im2col_ocf
(
*
context
,
input
,
output_ocf
,
stride
,
stride
,
padding
,
padding
);
im2col_ocf
(
*
context
,
input
,
output_ocf
,
stride
,
padding
,
0
,
output_height
*
output_width
);
float
*
out_cfo_ptr
;
if
(
paddle
::
platform
::
is_cpu_place
(
*
place
))
{
...
...
paddle/operators/sequence_project_op.cc
0 → 100644
浏览文件 @
1e60c9b2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_project_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceProjectOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceProjectOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequenceProjectOp should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE
(
in_dims
.
size
()
==
2
,
"Input(X) should be 2-D tensor."
);
int
context_length
=
ctx
->
Attrs
().
Get
<
int
>
(
"context_length"
);
bool
padding_trainable
=
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
);
int
context_start
=
ctx
->
Attrs
().
Get
<
int
>
(
"context_start"
);
if
(
padding_trainable
)
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PaddingData"
),
"Output(PaddingData) of SequenceProjectOp should not be null."
);
framework
::
DDim
padding_dim
=
ctx
->
GetOutputDim
(
"PaddingData"
);
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
total_pad
=
up_pad
+
down_pad
;
int
input_width
=
static_cast
<
int
>
(
in_dims
[
1
]);
PADDLE_ENFORCE
(
padding_dim
.
size
()
==
2
,
"Input(PaddingData) should be 2-D tensor."
);
PADDLE_ENFORCE
(
padding_dim
[
0
]
==
total_pad
&&
padding_dim
[
1
]
==
input_width
,
"Input(PaddingData)'s shape is not consistent with 'context_start' "
"and 'context_length'."
);
if
(
context_start
==
0
&&
context_length
==
1
)
{
PADDLE_THROW
(
"if context_start == 0 && context_length == 1, padding_trainable "
"should be false."
);
}
}
in_dims
[
1
]
=
in_dims
[
1
]
*
context_length
;
ctx
->
SetOutputDim
(
"Out"
,
in_dims
);
}
};
class
SequenceProjectGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Gradient of Out should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"The input X should not be null."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
))
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PaddingData"
),
"Output(PaddingData) of SequenceProjectOp should not be null."
);
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
};
class
SequenceProjectOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SequenceProjectOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"A float LoDTensor, the variable-length input of SequenceProjectOp"
);
AddOutput
(
"Out"
,
"A float LoDTensor, the variable-length output of SequenceProjectOp."
);
AddOutput
(
"PaddingData"
,
"A float LoDTensor, the padding data of SequenceProjectOp."
);
AddAttr
<
bool
>
(
"padding_trainable"
,
"(bool, default false) the padding data of SequenceProjectOp "
"is trainable or not."
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"context_length"
,
"(int, default 3) the stride of SequenceProjectOp."
)
.
SetDefault
(
3
)
.
GreaterThan
(
0
);
AddAttr
<
int
>
(
"context_start"
,
"(int, default 0) the xx of SequenceProjectOp."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"context_stride"
,
"(int, default 1) the xx of SequenceProjectOp."
)
.
SetDefault
(
1
)
.
GreaterThan
(
0
);
AddComment
(
R"DOC(
SequenceProjectOp projects features of context_length time-steps of each instance.
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
Besides, for the sake of simplicity, we assume M=1 and N=2.
X = [[a1, a2,
b1, b2.
c1, c2]
[d1, d2]]
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
- Case1:
If we use zero to pad instead of learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out = [0, 0, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, 0, 0;
0, 0, d1, d2, 0, 0]
- Case2:
// If we use zero to pad instead of learned weight to pad,
// and the context_lenth is 3, the output (Out) is:
//
// Out = [0, 0, a1, a2, b1, b2;
// a1, a2, b1, b2, c1, c2;
// b1, b2, c1, c2, 0, 0;
// 0, 0, d1, d2, 0, 0]
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sequence_project
,
ops
::
SequenceProjectOp
,
ops
::
SequenceProjectOpMaker
,
sequence_project_grad
,
ops
::
SequenceProjectGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_project
,
ops
::
SequenceProjectKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_project_grad
,
ops
::
SequenceProjectGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sequence_project_op.cu
0 → 100644
浏览文件 @
1e60c9b2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_project_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sequence_project
,
ops
::
SequenceProjectKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
sequence_project_grad
,
ops
::
SequenceProjectGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sequence_project_op.h
0 → 100644
浏览文件 @
1e60c9b2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/strided_memcpy.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
SequenceProjectKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
int
context_stride
=
context
.
Attr
<
int
>
(
"context_stride"
);
// InferShape by in_lod
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod_level_0
=
in
->
lod
()[
0
];
int64_t
input_stride
=
in
->
dims
()[
1
];
int64_t
output_stride
=
out
->
dims
()[
1
];
int64_t
padding_stride
=
0
;
PADDLE_ENFORCE
(
input_stride
*
context_length
==
output_stride
,
"Input size and pooling size should be consistent."
);
const
LoDTensor
*
padding_data
=
nullptr
;
if
(
padding_trainable
)
{
padding_data
=
context
.
Input
<
LoDTensor
>
(
"PaddingData"
);
PADDLE_ENFORCE_EQ
(
padding_data
->
dims
().
size
(),
2UL
,
"Only support one level sequence now."
);
padding_stride
=
padding_data
->
dims
()[
1
];
PADDLE_ENFORCE
(
padding_stride
==
input_stride
,
"Input size and pooling size should be consistent."
);
}
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
im2col_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_level_0
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
in
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
Tensor
out_t
=
out
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
int
sequence_height
=
in_t
.
dims
()[
0
];
int
sequence_width
=
in_t
.
dims
()[
1
];
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels,
// filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
sequence_height
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
for
(
int
j
=
0
;
j
<
context_length
;
++
j
)
{
int
pad
;
int
row_start
;
if
(
up_pad
!=
0
)
{
pad
=
up_pad
;
row_start
=
0
;
}
else
if
(
down_pad
!=
0
)
{
pad
=
down_pad
;
row_start
=
down_pad
;
}
else
{
pad
=
0
;
row_start
=
0
;
}
im2col_ocf
(
context
.
device_context
(),
in_t
,
out_t
,
/*stride*/
context_stride
,
/*pad*/
pad
,
/*row_start*/
row_start
,
/*row_end*/
row_start
+
sequence_height
);
if
(
padding_trainable
)
{
// add up trainable data
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
!=
0
)
{
for
(
int
k
=
0
;
k
<
up_pad
;
++
k
)
{
Tensor
out_t_sub
=
out_t
.
Slice
<
T
>
(
k
*
context_length
,
k
*
context_length
+
(
up_pad
-
k
));
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
k
,
context_length
-
k
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
}
if
(
down_pad
!=
0
)
{
int
k
=
(
sequence_height
+
up_pad
-
context_length
)
/
context_stride
+
1
;
for
(
int
t
=
0
;
t
+
k
<
sequence_height
;
++
t
)
{
Tensor
out_t_sub
=
out_t
.
Slice
<
T
>
((
k
+
t
)
*
context_length
*
sequence_width
-
t
*
sequence_width
,
(
k
+
t
)
*
context_length
*
sequence_width
);
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
up_pad
+
1
,
up_pad
+
1
+
t
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
}
}
};
template
<
typename
Place
,
typename
T
>
class
SequenceProjectGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// auto* in = context.Input<LoDTensor>("X");
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
int
context_stride
=
context
.
Attr
<
bool
>
(
"context_stride"
);
// InferShape by in_lod
PADDLE_ENFORCE_EQ
(
in_g
->
lod
().
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod_g_level_0
=
in_g
->
lod
()[
0
];
int64_t
input_width
=
in_g
->
dims
()[
1
];
int64_t
output_width
=
out_g
->
dims
()[
1
];
int64_t
padding_width
=
0
;
PADDLE_ENFORCE
(
input_width
*
context_length
==
output_width
,
"Input size and pooling size should be consistent."
);
LoDTensor
*
padding_data
=
nullptr
;
if
(
padding_trainable
)
{
padding_data
=
context
.
Output
<
LoDTensor
>
(
"PaddingData"
);
padding_data
->
mutable_data
<
T
>
(
context
.
GetPlace
());
PADDLE_ENFORCE_EQ
(
padding_data
->
dims
().
size
(),
2UL
,
"Only support one level sequence now."
);
padding_width
=
padding_data
->
dims
()[
1
];
PADDLE_ENFORCE
(
padding_width
==
input_width
,
"Input size and pooling size should be consistent."
);
}
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
col2im_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_g_level_0
.
size
())
-
1
;
++
i
)
{
Tensor
in_g_t
=
in_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
Tensor
out_g_t
=
out_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
int
sequence_height
=
in_g_t
.
dims
()[
0
];
int
sequence_width
=
in_g_t
.
dims
()[
1
];
for
(
int
j
=
0
;
j
<
context_length
;
++
j
)
{
if
(
padding_trainable
)
{
out_g_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
!=
0
)
{
for
(
int
k
=
0
;
k
<
up_pad
;
++
k
)
{
Tensor
out_t_sub
=
out_g_t
.
Slice
<
T
>
(
k
*
context_length
,
k
*
context_length
+
(
up_pad
-
k
));
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
k
,
context_length
-
k
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
// out_t_sub_e.device(place) = 0;
}
}
if
(
down_pad
!=
0
)
{
int
k
=
(
sequence_height
+
up_pad
-
context_length
)
/
context_stride
+
1
;
for
(
int
t
=
0
;
t
+
k
<
sequence_height
;
++
t
)
{
Tensor
out_t_sub
=
out_g_t
.
Slice
<
T
>
((
k
+
t
)
*
context_length
*
sequence_width
-
t
*
sequence_width
,
(
k
+
t
)
*
context_length
*
sequence_width
);
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
up_pad
+
1
,
up_pad
+
1
+
t
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
// out_t_sub_e.device(place) = 0;
}
}
}
out_g_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
}));
int
pad
;
int
row_start
;
if
(
up_pad
!=
0
)
{
pad
=
up_pad
;
row_start
=
0
;
}
else
if
(
down_pad
!=
0
)
{
pad
=
down_pad
;
row_start
=
down_pad
;
}
else
{
pad
=
0
;
row_start
=
0
;
}
col2im_ocf
(
context
.
device_context
(),
in_g_t
,
out_g_t
,
/*stride*/
context_stride
,
/*pad*/
pad
,
/*row_start*/
row_start
,
/*row_end*/
row_start
+
sequence_height
);
// out_g_t back to orign size
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_seq_project.py
0 → 100644
浏览文件 @
1e60c9b2
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestSeqProject
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
op_type
=
'sequence_project'
# one level, batch size
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
input_size
[
0
],
self
.
input_size
[
1
]]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
self
.
input_size
[
0
]]]
self
.
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
self
.
end_pad
=
np
.
max
([
0
,
self
.
context_start
+
self
.
context_length
-
1
])
self
.
total_pad
=
self
.
begin_pad
+
self
.
end_pad
w
=
np
.
ones
((
self
.
total_pad
,
self
.
input_size
[
1
]))
*
100
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'PaddingData'
:
w
}
self
.
attrs
=
{
'context_start'
:
self
.
context_start
,
'context_length'
:
self
.
context_length
,
'padding_trainable'
:
self
.
padding_trainable
}
out
=
np
.
zeros
((
self
.
input_size
[
0
],
self
.
input_size
[
1
]
*
self
.
context_length
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
self
.
compute
()
def
compute
(
self
):
x
,
lod
=
self
.
inputs
[
'X'
]
w
=
self
.
inputs
[
'PaddingData'
]
out
=
self
.
outputs
[
'Out'
]
lod
=
lod
[
0
]
for
i
in
range
(
len
(
lod
)
-
1
):
for
j
in
range
(
self
.
context_length
):
in_begin
=
lod
[
i
]
+
self
.
context_start
+
j
in_end
=
lod
[
i
+
1
]
+
self
.
context_start
+
j
out_begin
=
lod
[
i
]
out_end
=
lod
[
i
+
1
]
if
in_begin
<
lod
[
i
]:
pad_size
=
np
.
min
([
lod
[
i
]
-
in_begin
,
lod
[
i
+
1
]
-
lod
[
i
]])
if
self
.
padding_trainable
:
sub_w
=
w
[
j
:
pad_size
,
:]
out
[
lod
[
i
]:
lod
[
i
]
+
pad_size
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
=
sub_w
# pass
out_begin
=
lod
[
i
]
+
pad_size
in_begin
=
lod
[
i
]
if
in_end
>
lod
[
i
+
1
]:
pad_size
=
np
.
min
(
[
in_end
-
lod
[
i
+
1
],
lod
[
i
+
1
]
-
lod
[
i
]])
out_sub
=
out
[
lod
[
i
+
1
]
-
pad_size
:
lod
[
i
+
1
],
:]
if
self
.
padding_trainable
:
sub_w
=
w
[
j
-
pad_size
:
j
,
:]
out
[
lod
[
i
+
1
]
-
pad_size
:
lod
[
i
+
1
],
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
=
sub_w
# pass
in_end
=
lod
[
i
+
1
]
out_end
=
lod
[
i
+
1
]
-
pad_size
if
in_end
<=
in_begin
:
continue
in_sub
=
x
[
in_begin
:
in_end
,
:]
out
[
out_begin
:
out_end
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
+=
in_sub
def
init_test_case
(
self
):
self
.
input_size
=
[
11
,
23
]
self
.
op_type
=
"sequence_project"
self
.
context_start
=
-
1
self
.
context_length
=
3
self
.
padding_trainable
=
False
def
test_check_output
(
self
):
self
.
check_output
()
# def test_check_grad(self):
# self.check_grad(["X"], "Out")
# class TestSeqAvgPool2D(TestSeqProject):
# def init_test_case(self):
# self.input_size = [11, 23]
# self.op_type = "sequence_project"
#
# self.context_start = -1
# self.context_length = 3
# self.padding_trainable = True
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录