sequence_project_op.h 13.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
C
chengduoZH 已提交
29 30 31 32 33 34 35 36 37 38 39
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class SequenceProjectKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    out->mutable_data<T>(context.GetPlace());
40 41 42 43 44 45 46

    // need discuss, is it necessary to set zeros ?
    // Because if padding_trainable is false, padding data should be zeros.
    auto temp = framework::EigenVector<T>::Flatten(*out);
    temp.device(context.GetEigenDevice<Place>()) =
        temp.constant(static_cast<T>(0));

C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    bool padding_trainable = context.Attr<bool>("padding_trainable");
    int context_stride = context.Attr<int>("context_stride");

    // InferShape by in_lod
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");
    auto lod_level_0 = in->lod()[0];
58 59 60 61
    int64_t input_width = in->dims()[1];
    int64_t output_width = out->dims()[1];
    int64_t padding_width = 0;
    PADDLE_ENFORCE(input_width * context_length == output_width,
C
chengduoZH 已提交
62 63 64 65 66 67 68
                   "Input size and pooling size should be consistent.");

    const LoDTensor* padding_data = nullptr;
    if (padding_trainable) {
      padding_data = context.Input<LoDTensor>("PaddingData");
      PADDLE_ENFORCE_EQ(padding_data->dims().size(), 2UL,
                        "Only support one level sequence now.");
69 70
      padding_width = padding_data->dims()[1];
      PADDLE_ENFORCE(padding_width == input_width,
C
chengduoZH 已提交
71 72 73 74 75
                     "Input size and pooling size should be consistent.");
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
76 77
    int sequence_height, sequence_width;
    int input_row_begin, input_row_end;
C
chengduoZH 已提交
78 79 80 81 82 83

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        im2col_ocf;

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
84 85 86 87 88
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
89 90 91
      Tensor out_t = out->Slice<T>(static_cast<int>(lod_level_0[i]),
                                   static_cast<int>(lod_level_0[i + 1]));

92 93 94
      sequence_height = static_cast<int>(out_t.dims()[0]);
      sequence_width = static_cast<int>(in->dims()[1]);

C
chengduoZH 已提交
95 96 97
      std::vector<int64_t> output_shape(
          {sequence_height, 1, 1, context_length,
           sequence_width});  // output_height, output_width,
98
      // input_channels, filter_height, filter_width
C
chengduoZH 已提交
99
      out_t.Resize(framework::make_ddim(output_shape));
100 101 102 103 104 105 106 107

      if (input_row_begin < input_row_end) {
        Tensor in_t = in->Slice<T>(input_row_begin, input_row_end);
        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
108
        im2col_ocf(context.device_context(), in_t, out_t,
C
chengduoZH 已提交
109 110
                   /*stride_height*/ context_stride, /*stride_width*/ 0, up_pad,
                   down_pad);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
      }

      if (padding_trainable) {
        // add up trainable data
        out_t.Resize(framework::make_ddim(
            {sequence_height * context_length, sequence_width}));

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
            Tensor out_t_sub = out_t.Slice<T>(
                k * context_length, k * context_length + padding_size);
            Tensor w_sub = padding_data->Slice<T>(k, k + padding_size);
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(place) = w_sub_e;
C
chengduoZH 已提交
132
          }
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
C
chengduoZH 已提交
152
            }
153 154 155 156 157 158 159 160 161 162
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
            Tensor out_t_sub = out_t.Slice<T>(
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
            Tensor w_sub = padding_data->Slice<T>(
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(place) = w_sub_e;
C
chengduoZH 已提交
163 164 165
          }
        }
      }
166 167
      out_t.Resize(framework::make_ddim(
          {sequence_height, context_length * sequence_width}));
C
chengduoZH 已提交
168 169 170 171 172 173 174 175 176 177
    }
  }
};

template <typename Place, typename T>
class SequenceProjectGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
178
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
179 180 181 182 183 184
    in_g->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    bool padding_trainable = context.Attr<bool>("padding_trainable");
185
    int context_stride = context.Attr<int>("context_stride");
C
chengduoZH 已提交
186 187

    // InferShape by in_lod
188
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
189
                      "Only support one level sequence now.");
190
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
191 192 193 194 195 196
    int64_t input_width = in_g->dims()[1];
    int64_t output_width = out_g->dims()[1];
    int64_t padding_width = 0;
    PADDLE_ENFORCE(input_width * context_length == output_width,
                   "Input size and pooling size should be consistent.");

197
    LoDTensor* padding_data_g = nullptr;
C
chengduoZH 已提交
198
    if (padding_trainable) {
199 200 201 202
      padding_data_g =
          context.Output<LoDTensor>(framework::GradVarName("PaddingData"));
      padding_data_g->mutable_data<T>(context.GetPlace());
      PADDLE_ENFORCE_EQ(padding_data_g->dims().size(), 2UL,
C
chengduoZH 已提交
203
                        "Only support one level sequence now.");
204
      padding_width = padding_data_g->dims()[1];
C
chengduoZH 已提交
205 206 207 208 209 210
      PADDLE_ENFORCE(padding_width == input_width,
                     "Input size and pooling size should be consistent.");
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
211 212
    int sequence_height, sequence_width;
    int input_row_begin, input_row_end;
C
chengduoZH 已提交
213 214 215 216 217 218

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        col2im_ocf;

    for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
219 220 221 222 223
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_g_level_0[i]) + context_start
                            : static_cast<int>(lod_g_level_0[i]);
      input_row_end = static_cast<int>(lod_g_level_0[i + 1]);

C
chengduoZH 已提交
224 225 226
      Tensor out_g_t = out_g->Slice<T>(static_cast<int>(lod_g_level_0[i]),
                                       static_cast<int>(lod_g_level_0[i + 1]));

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      sequence_height = static_cast<int>(out_g_t.dims()[0]);
      sequence_width = static_cast<int>(in_g->dims()[1]);

      if (padding_trainable) {
        // add up trainable data
        out_g_t.Resize(framework::make_ddim(
            {sequence_height * context_length, sequence_width}));

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad,
              static_cast<int>(lod_g_level_0[i + 1] - lod_g_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
            Tensor out_t_sub = out_g_t.Slice<T>(
                k * context_length, k * context_length + padding_size);
            Tensor w_sub = padding_data_g->Slice<T>(k, k + padding_size);
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            w_sub_e.device(place) = w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
250
          }
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
C
chengduoZH 已提交
270
            }
271 272 273 274 275 276 277 278 279 280
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
            Tensor out_t_sub = out_g_t.Slice<T>(
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
            Tensor w_sub = padding_data_g->Slice<T>(
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            w_sub_e.device(place) = w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
281 282
          }
        }
283 284 285 286
      }

      if (in && input_row_begin < input_row_end) {
        Tensor in_t = in_g->Slice<T>(input_row_begin, input_row_end);
C
chengduoZH 已提交
287

288 289 290 291 292 293 294 295 296 297 298 299
        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_g_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

        col2im_ocf(context.device_context(), in_t, out_g_t,
C
chengduoZH 已提交
300 301
                   /*stride_height*/ context_stride, /*stride_width*/ 0, up_pad,
                   down_pad);
C
chengduoZH 已提交
302
      }
303 304 305

      out_g_t.Resize(framework::make_ddim(
          {sequence_height, context_length * sequence_width}));
C
chengduoZH 已提交
306 307 308 309 310 311
    }
  }
};

}  // namespace operators
}  // namespace paddle