Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
834b82f1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
834b82f1
编写于
10月 18, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix sequence_project_op forward and backward
上级
40688d22
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
292 addition
and
126 deletion
+292
-126
paddle/operators/sequence_project_op.cc
paddle/operators/sequence_project_op.cc
+15
-13
paddle/operators/sequence_project_op.h
paddle/operators/sequence_project_op.h
+175
-92
python/paddle/v2/framework/tests/test_seq_project.py
python/paddle/v2/framework/tests/test_seq_project.py
+102
-21
未找到文件。
paddle/operators/sequence_project_op.cc
浏览文件 @
834b82f1
...
...
@@ -38,24 +38,23 @@ class SequenceProjectOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PaddingData"
),
"Output(PaddingData) of SequenceProjectOp should not be null."
);
framework
::
DDim
padding_dim
=
ctx
->
Get
Out
putDim
(
"PaddingData"
);
framework
::
DDim
padding_dim
=
ctx
->
Get
In
putDim
(
"PaddingData"
);
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
total_pad
=
up_pad
+
down_pad
;
int
input_width
=
static_cast
<
int
>
(
in_dims
[
1
]);
if
(
context_start
==
0
&&
context_length
==
1
)
{
PADDLE_THROW
(
"if context_start == 0 && context_length == 1, padding_trainable "
"should be false."
);
}
PADDLE_ENFORCE
(
padding_dim
.
size
()
==
2
,
"Input(PaddingData) should be 2-D tensor."
);
PADDLE_ENFORCE
(
padding_dim
[
0
]
==
total_pad
&&
padding_dim
[
1
]
==
input_width
,
"Input(PaddingData)'s shape is not consistent with 'context_start' "
"and 'context_length'."
);
if
(
context_start
==
0
&&
context_length
==
1
)
{
PADDLE_THROW
(
"if context_start == 0 && context_length == 1, padding_trainable "
"should be false."
);
}
}
in_dims
[
1
]
=
in_dims
[
1
]
*
context_length
;
...
...
@@ -74,9 +73,11 @@ class SequenceProjectGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"The input X should not be null."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
))
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PaddingData"
),
"Output(PaddingData) of SequenceProjectOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"PaddingData"
)),
"Output(PaddingData@GRAD) of SequenceProjectGradOp should "
"not be null."
);
auto
padding_dims
=
ctx
->
GetInputDim
(
"PaddingData"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"PaddingData"
),
padding_dims
);
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
...
...
@@ -93,8 +94,8 @@ class SequenceProjectOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"A float LoDTensor, the variable-length output of SequenceProjectOp."
);
Add
Output
(
"PaddingData"
,
"A float LoDTensor, the padding data of SequenceProjectOp."
);
Add
Input
(
"PaddingData"
,
// PaddingData can be a float tensor
"A float LoDTensor, the padding data of SequenceProjectOp."
);
AddAttr
<
bool
>
(
"padding_trainable"
,
"(bool, default false) the padding data of SequenceProjectOp "
...
...
@@ -110,7 +111,8 @@ class SequenceProjectOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"context_stride"
,
"(int, default 1) the xx of SequenceProjectOp."
)
.
SetDefault
(
1
)
.
GreaterThan
(
0
);
.
GreaterThan
(
0
);
// Currently, sequence_project_op only support context_stride=1
AddComment
(
R"DOC(
SequenceProjectOp projects features of context_length time-steps of each instance.
...
...
paddle/operators/sequence_project_op.h
浏览文件 @
834b82f1
...
...
@@ -23,6 +23,9 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
...
...
@@ -34,6 +37,13 @@ class SequenceProjectKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// need discuss, is it necessary to set zeros ?
// Because if padding_trainable is false, padding data should be zeros.
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
temp
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
...
...
@@ -45,10 +55,10 @@ class SequenceProjectKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod_level_0
=
in
->
lod
()[
0
];
int64_t
input_
stride
=
in
->
dims
()[
1
];
int64_t
output_
stride
=
out
->
dims
()[
1
];
int64_t
padding_
stride
=
0
;
PADDLE_ENFORCE
(
input_
stride
*
context_length
==
output_stride
,
int64_t
input_
width
=
in
->
dims
()[
1
];
int64_t
output_
width
=
out
->
dims
()[
1
];
int64_t
padding_
width
=
0
;
PADDLE_ENFORCE
(
input_
width
*
context_length
==
output_width
,
"Input size and pooling size should be consistent."
);
const
LoDTensor
*
padding_data
=
nullptr
;
...
...
@@ -56,73 +66,105 @@ class SequenceProjectKernel : public framework::OpKernel<T> {
padding_data
=
context
.
Input
<
LoDTensor
>
(
"PaddingData"
);
PADDLE_ENFORCE_EQ
(
padding_data
->
dims
().
size
(),
2UL
,
"Only support one level sequence now."
);
padding_
stride
=
padding_data
->
dims
()[
1
];
PADDLE_ENFORCE
(
padding_
stride
==
input_stride
,
padding_
width
=
padding_data
->
dims
()[
1
];
PADDLE_ENFORCE
(
padding_
width
==
input_width
,
"Input size and pooling size should be consistent."
);
}
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
sequence_height
,
sequence_width
;
int
input_row_begin
,
input_row_end
;
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
im2col_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_level_0
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
in
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]);
Tensor
out_t
=
out
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
int
sequence_height
=
in_t
.
dims
()[
0
];
int
sequence_width
=
in_t
.
dims
()[
1
];
sequence_height
=
static_cast
<
int
>
(
out_t
.
dims
()[
0
]);
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels,
// filter_height, filter_width
// input_channels, filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
sequence_height
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
for
(
int
j
=
0
;
j
<
context_length
;
++
j
)
{
if
(
input_row_begin
<
input_row_end
)
{
Tensor
in_t
=
in
->
Slice
<
T
>
(
input_row_begin
,
input_row_end
);
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
im2col_ocf
(
context
.
device_context
(),
in_t
,
out_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
0
,
up_pad
,
down_pad
);
if
(
padding_trainable
)
{
// add up trainable data
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
!=
0
)
{
for
(
int
k
=
0
;
k
<
up_pad
;
++
k
)
{
Tensor
out_t_sub
=
out_t
.
Slice
<
T
>
(
k
*
context_length
,
k
*
context_length
+
(
up_pad
-
k
));
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
k
,
context_length
-
k
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
}
if
(
padding_trainable
)
{
// add up trainable data
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
>
0
)
{
// add up pad
int
padding_rows
=
std
::
min
(
up_pad
,
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]
-
lod_level_0
[
i
]));
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
Tensor
out_t_sub
=
out_t
.
Slice
<
T
>
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
if
(
down_pad
!=
0
)
{
int
k
=
(
sequence_height
+
up_pad
-
context_length
)
/
context_stride
+
1
;
for
(
int
t
=
0
;
t
+
k
<
sequence_height
;
++
t
)
{
Tensor
out_t_sub
=
out_t
.
Slice
<
T
>
((
k
+
t
)
*
context_length
*
sequence_width
-
t
*
sequence_width
,
(
k
+
t
)
*
context_length
*
sequence_width
);
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
up_pad
+
1
,
up_pad
+
1
+
t
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
if
(
down_pad
>
0
)
{
// add down pad
int
down_pad_begin_row
=
std
::
max
(
0
,
(
sequence_height
-
context_start
-
context_length
)
+
1
)
+
1
;
int
padding_begin
=
std
::
max
(
0
,
context_start
-
sequence_height
);
int
padding_size
=
sequence_height
-
context_start
>=
context_length
?
1
:
context_length
-
(
sequence_height
-
context_start
);
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
int
padding_idx
=
padding_begin
;
for
(
int
t
=
0
;
t
+
down_pad_begin_row
<=
sequence_height
;
++
t
,
++
padding_size
)
{
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
if
(
padding_size
>
context_length
)
{
padding_size
=
context_length
;
padding_idx
++
;
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
Tensor
out_t_sub
=
out_t
.
Slice
<
T
>
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
up_pad
+
padding_idx
,
up_pad
+
padding_idx
+
padding_size
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
};
...
...
@@ -131,95 +173,136 @@ template <typename Place, typename T>
class
SequenceProjectGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// auto* in = context.Input<LoDTensor>("X");
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
int
context_stride
=
context
.
Attr
<
bool
>
(
"context_stride"
);
int
context_stride
=
context
.
Attr
<
int
>
(
"context_stride"
);
// InferShape by in_lod
PADDLE_ENFORCE_EQ
(
in
_g
->
lod
().
size
(),
1UL
,
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod_g_level_0
=
in
_g
->
lod
()[
0
];
auto
lod_g_level_0
=
in
->
lod
()[
0
];
int64_t
input_width
=
in_g
->
dims
()[
1
];
int64_t
output_width
=
out_g
->
dims
()[
1
];
int64_t
padding_width
=
0
;
PADDLE_ENFORCE
(
input_width
*
context_length
==
output_width
,
"Input size and pooling size should be consistent."
);
LoDTensor
*
padding_data
=
nullptr
;
LoDTensor
*
padding_data
_g
=
nullptr
;
if
(
padding_trainable
)
{
padding_data
=
context
.
Output
<
LoDTensor
>
(
"PaddingData"
);
padding_data
->
mutable_data
<
T
>
(
context
.
GetPlace
());
PADDLE_ENFORCE_EQ
(
padding_data
->
dims
().
size
(),
2UL
,
padding_data_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"PaddingData"
));
padding_data_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
PADDLE_ENFORCE_EQ
(
padding_data_g
->
dims
().
size
(),
2UL
,
"Only support one level sequence now."
);
padding_width
=
padding_data
->
dims
()[
1
];
padding_width
=
padding_data
_g
->
dims
()[
1
];
PADDLE_ENFORCE
(
padding_width
==
input_width
,
"Input size and pooling size should be consistent."
);
}
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
sequence_height
,
sequence_width
;
int
input_row_begin
,
input_row_end
;
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
col2im_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_g_level_0
.
size
())
-
1
;
++
i
)
{
Tensor
in_g_t
=
in_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_g_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_g_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]);
Tensor
out_g_t
=
out_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
int
sequence_height
=
in_g_t
.
dims
()[
0
];
int
sequence_width
=
in_g_t
.
dims
()[
1
];
for
(
int
j
=
0
;
j
<
context_length
;
++
j
)
{
if
(
padding_trainable
)
{
out_g_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
!=
0
)
{
for
(
int
k
=
0
;
k
<
up_pad
;
++
k
)
{
Tensor
out_t_sub
=
out_g_t
.
Slice
<
T
>
(
k
*
context_length
,
k
*
context_length
+
(
up_pad
-
k
));
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
k
,
context_length
-
k
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
// out_t_sub_e.device(place) = 0;
}
sequence_height
=
static_cast
<
int
>
(
out_g_t
.
dims
()[
0
]);
sequence_width
=
static_cast
<
int
>
(
in_g
->
dims
()[
1
]);
if
(
padding_trainable
)
{
// add up trainable data
out_g_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
>
0
)
{
// add up pad
int
padding_rows
=
std
::
min
(
up_pad
,
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]
-
lod_g_level_0
[
i
]));
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
Tensor
out_t_sub
=
out_g_t
.
Slice
<
T
>
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
Tensor
w_sub
=
padding_data_g
->
Slice
<
T
>
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
}
if
(
down_pad
!=
0
)
{
int
k
=
(
sequence_height
+
up_pad
-
context_length
)
/
context_stride
+
1
;
for
(
int
t
=
0
;
t
+
k
<
sequence_height
;
++
t
)
{
Tensor
out_t_sub
=
out_g_t
.
Slice
<
T
>
((
k
+
t
)
*
context_length
*
sequence_width
-
t
*
sequence_width
,
(
k
+
t
)
*
context_length
*
sequence_width
);
Tensor
w_sub
=
padding_data
->
Slice
<
T
>
(
up_pad
+
1
,
up_pad
+
1
+
t
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
// out_t_sub_e.device(place) = 0;
}
if
(
down_pad
>
0
)
{
// add down pad
int
down_pad_begin_row
=
std
::
max
(
0
,
(
sequence_height
-
context_start
-
context_length
)
+
1
)
+
1
;
int
padding_begin
=
std
::
max
(
0
,
context_start
-
sequence_height
);
int
padding_size
=
sequence_height
-
context_start
>=
context_length
?
1
:
context_length
-
(
sequence_height
-
context_start
);
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
int
padding_idx
=
padding_begin
;
for
(
int
t
=
0
;
t
+
down_pad_begin_row
<=
sequence_height
;
++
t
,
++
padding_size
)
{
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
if
(
padding_size
>
context_length
)
{
padding_size
=
context_length
;
padding_idx
++
;
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
Tensor
out_t_sub
=
out_g_t
.
Slice
<
T
>
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
Tensor
w_sub
=
padding_data_g
->
Slice
<
T
>
(
up_pad
+
padding_idx
,
up_pad
+
padding_idx
+
padding_size
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
}
}
out_g_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
}));
}
if
(
in
&&
input_row_begin
<
input_row_end
)
{
Tensor
in_t
=
in_g
->
Slice
<
T
>
(
input_row_begin
,
input_row_end
);
col2im_ocf
(
context
.
device_context
(),
in_g_t
,
out_g_t
,
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_g_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
col2im_ocf
(
context
.
device_context
(),
in_t
,
out_g_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
0
,
up_pad
,
down_pad
);
// out_g_t back to orign size
}
out_g_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
};
...
...
python/paddle/v2/framework/tests/test_seq_project.py
浏览文件 @
834b82f1
import
unittest
import
numpy
as
np
import
random
from
op_test
import
OpTest
...
...
@@ -10,18 +11,22 @@ class TestSeqProject(OpTest):
# one level, batch size
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
input_size
[
0
],
self
.
input_size
[
1
]]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
self
.
input_size
[
0
]]]
self
.
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
self
.
end_pad
=
np
.
max
([
0
,
self
.
context_start
+
self
.
context_length
-
1
])
self
.
total_pad
=
self
.
begin_pad
+
self
.
end_pad
w
=
np
.
ones
((
self
.
total_pad
,
self
.
input_size
[
1
]))
*
100
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'PaddingData'
:
w
}
# w = np.ones((self.total_pad, self.input_size[1])) * 100
w
=
np
.
array
(
range
(
self
.
total_pad
*
self
.
input_size
[
1
]))
w
.
shape
=
self
.
total_pad
,
self
.
input_size
[
1
]
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'PaddingData'
:
(
w
,
[[
0
,
self
.
total_pad
]])
}
self
.
attrs
=
{
'context_start'
:
self
.
context_start
,
'context_length'
:
self
.
context_length
,
'padding_trainable'
:
self
.
padding_trainable
'padding_trainable'
:
self
.
padding_trainable
,
'context_stride'
:
self
.
context_stride
}
out
=
np
.
zeros
((
self
.
input_size
[
0
],
self
.
input_size
[
1
]
*
self
.
context_length
)).
astype
(
'float32'
)
...
...
@@ -30,9 +35,10 @@ class TestSeqProject(OpTest):
def
compute
(
self
):
x
,
lod
=
self
.
inputs
[
'X'
]
w
=
self
.
inputs
[
'PaddingData'
]
w
,
_
=
self
.
inputs
[
'PaddingData'
]
out
=
self
.
outputs
[
'Out'
]
lod
=
lod
[
0
]
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
for
i
in
range
(
len
(
lod
)
-
1
):
for
j
in
range
(
self
.
context_length
):
...
...
@@ -43,22 +49,20 @@ class TestSeqProject(OpTest):
if
in_begin
<
lod
[
i
]:
pad_size
=
np
.
min
([
lod
[
i
]
-
in_begin
,
lod
[
i
+
1
]
-
lod
[
i
]])
if
self
.
padding_trainable
:
sub_w
=
w
[
j
:
pad_size
,
:]
sub_w
=
w
[
j
:
j
+
pad_size
,
:]
out
[
lod
[
i
]:
lod
[
i
]
+
pad_size
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
=
sub_w
# pass
out_begin
=
lod
[
i
]
+
pad_size
in_begin
=
lod
[
i
]
if
in_end
>
lod
[
i
+
1
]:
pad_size
=
np
.
min
(
[
in_end
-
lod
[
i
+
1
],
lod
[
i
+
1
]
-
lod
[
i
]])
out_sub
=
out
[
lod
[
i
+
1
]
-
pad_size
:
lod
[
i
+
1
],
:]
if
self
.
padding_trainable
:
sub_w
=
w
[
j
-
pad_size
:
j
,
:]
sub_w
=
w
[
begin_pad
+
self
.
context_start
+
j
-
pad_size
:
begin_pad
+
self
.
context_start
+
j
,
:]
out
[
lod
[
i
+
1
]
-
pad_size
:
lod
[
i
+
1
],
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
=
sub_w
# pass
in_end
=
lod
[
i
+
1
]
out_end
=
lod
[
i
+
1
]
-
pad_size
if
in_end
<=
in_begin
:
...
...
@@ -69,28 +73,105 @@ class TestSeqProject(OpTest):
self
.
input_size
[
1
]]
+=
in_sub
def
init_test_case
(
self
):
self
.
input_size
=
[
11
,
23
]
self
.
input_row
=
11
self
.
input_size
=
[
self
.
input_row
,
23
]
self
.
lod
=
[[
0
,
4
,
5
,
8
,
self
.
input_row
]]
self
.
op_type
=
"sequence_project"
self
.
context_start
=
-
1
self
.
context_length
=
3
self
.
padding_trainable
=
False
self
.
padding_trainable
=
True
self
.
context_stride
=
1
def
test_check_output
(
self
):
self
.
check_output
()
# def test_check_grad(self):
# self.check_grad(["X"], "Out")
# self.check_grad(
# set(['X', 'PaddingData']), 'Out', max_relative_error=0.05)
# class TestSeqAvgPool2D(TestSeqProject):
# def init_test_case(self):
# self.input_size = [11, 23]
# self.op_type = "sequence_project"
# def test_check_grad_no_filter(self):
# self.check_grad(
# ['X'],
# 'Out',
# max_relative_error=0.05,
# no_grad_set=set(['PaddingData']))
#
# self.context_start = -1
# self.context_length = 3
# self.padding_trainable = True
# def test_check_grad_no_input(self):
# self.check_grad(
# ['PaddingData'],
# 'Out',
# max_relative_error=0.05,
# no_grad_set=set(['X']))
'''
class TestSeqProjectCases(TestSeqProject):
def setUp(self):
self.init_test_case()
self.op_type = 'sequence_project'
num = 0
for context_start in [-5, -3, -1, 0, 3]:
for context_length in [1, 2, 5, 7]:
for batch_size in [1, 2, 5, 7]:
for padding_trainable in [False, True]:
if context_length == 1 and context_start == 0 and padding_trainable:
continue
self.context_start = context_start
self.context_length = context_length
self.padding_trainable = padding_trainable
self.input_size = [batch_size, 23]
x = np.random.uniform(0.1, 1,
self.input_size).astype('float32')
self.lod = [[0, self.input_size[0]]]
if self.input_size[0] > 2:
idx = range(self.input_size[0])
del idx[0]
self.lod = [
[0] + np.sort(random.sample(idx, 2)).tolist() +
[self.input_size[0]]
]
self.begin_pad = np.max([0, -self.context_start])
self.end_pad = np.max(
[0, self.context_start + self.context_length - 1])
self.total_pad = self.begin_pad + self.end_pad
# w = np.ones((self.total_pad, self.input_size[1])) * 100
w = np.array(range(self.total_pad * self.input_size[1]))
w.shape = self.total_pad, self.input_size[1]
if self.total_pad * self.input_size[1] == 0:
w = np.random.uniform(
0.1, 1,
(1, self.input_size[1])).astype('float32')
self.total_pad = 1
self.inputs = {
'X': (x, self.lod),
'PaddingData': (w, [[0, self.total_pad]])
}
self.attrs = {
'context_start': self.context_start,
'context_length': self.context_length,
'padding_trainable': self.padding_trainable,
'context_stride': self.context_stride
}
out = np.zeros((self.input_size[0], self.input_size[1] *
self.context_length)).astype('float32')
self.outputs = {'Out': out}
print num
print self.attrs
print batch_size
print padding_trainable
print "$$$$$$$$$$$$$"
self.compute()
self.test_check_output()
num += 1
'''
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录