jit_kernel_blas.cc 9.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
18
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
T
tensor-tang 已提交
19 20
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
21 22 23 24
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

T
tensor-tang 已提交
34 35 36 37 38 39 40 41
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
42

T
tensor-tang 已提交
43 44 45 46
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68

template <typename T>
void VScalMKL(const T* a, const T* x, T* y, int n);

template <>
void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
  if (x == y) {
    platform::dynload::cblas_sscal(n, *a, y, 1);
  } else {
69
    refer::VScal<float>(a, x, y, n);
T
tensor-tang 已提交
70 71 72 73 74 75 76 77
  }
}

template <>
void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
  if (x == y) {
    platform::dynload::cblas_dscal(n, *a, y, 1);
  } else {
78
    refer::VScal<double>(a, x, y, n);
T
tensor-tang 已提交
79 80 81
  }
}

T
tensor-tang 已提交
82 83
#endif

T
tensor-tang 已提交
84
/* VMUL JitKernel */
T
tensor-tang 已提交
85
template <typename T>
T
tensor-tang 已提交
86 87
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
88
  JITKERNEL_DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
89
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
90
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
91
    if (useJIT(d)) {
T
tensor-tang 已提交
92
      // roughly estimate the size of code
93
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
94
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 0, false,
T
tensor-tang 已提交
95
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
96 97 98 99
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
100
#endif
T
tensor-tang 已提交
101
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
102 103 104 105
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
106
#endif
107
    this->Compute = refer::VMul<T>;
T
tensor-tang 已提交
108 109
  }

T
tensor-tang 已提交
110
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
111

T
tensor-tang 已提交
112
 private:
T
tensor-tang 已提交
113
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
114
#endif
T
tensor-tang 已提交
115
};
T
tensor-tang 已提交
116

T
tensor-tang 已提交
117
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
118 119
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
120
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
121
}
T
tensor-tang 已提交
122
#endif
T
tensor-tang 已提交
123

T
tensor-tang 已提交
124
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
125 126
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
T
tensor-tang 已提交
127
  return platform::MayIUse(platform::avx512f) && d > 512;
T
tensor-tang 已提交
128 129 130 131 132 133
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
134
#endif
T
tensor-tang 已提交
135

T
tensor-tang 已提交
136 137
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
138 139
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
140
  JITKERNEL_DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
141
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
T
tensor-tang 已提交
142
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
143
    if (useJIT(d)) {
144
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
145
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, false,
T
tensor-tang 已提交
146
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
147 148 149
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
150
    }
T
tensor-tang 已提交
151
#endif
T
tensor-tang 已提交
152 153 154 155
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
T
tensor-tang 已提交
156
    }
T
tensor-tang 已提交
157
#endif
158
    this->Compute = refer::VAdd<T>;
T
tensor-tang 已提交
159
  }
T
fix mac  
tensor-tang 已提交
160
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
161 162

 private:
T
tensor-tang 已提交
163
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
164
#endif
T
tensor-tang 已提交
165
};
T
tensor-tang 已提交
166

T
tensor-tang 已提交
167
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
168 169
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
170
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
171
}
T
tensor-tang 已提交
172
#endif
T
tensor-tang 已提交
173

T
tensor-tang 已提交
174
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
175 176 177 178
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
179

T
tensor-tang 已提交
180 181 182 183
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
184 185
#endif

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
#ifdef PADDLE_WITH_MKLDNN
/* EltwiseMul for nChw16c & NC inputs JitKernel */
template <typename T>
class EltwiseMulnChw16cNCKernelImpl
    : public math::jitkernel::EltwiseMulnChw16cNCKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit EltwiseMulnChw16cNCKernelImpl(int d)
      : EltwiseMulnChw16cNCKernel<T>() {
    using mul_func_t = void (*)(const float*, const float*, float*, int, int);
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      // roughly estimate the size of code
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
      sz = sz > 4096 ? sz : 4096;
      jitcode_.reset(new gen::EltwiseMulnChw16cNC(sz));
      this->Compute = (mul_func_t)jitcode_->getCode();
      return;
    }
#endif
    PADDLE_THROW(
        "This kernel shouldn't be used in Non-Xbyak, Non-MKL-DNN "
        "environemnt");
  }

#ifdef PADDLE_WITH_XBYAK

 private:
  std::unique_ptr<gen::EltwiseMulnChw16cNC> jitcode_{nullptr};
};

template <>
bool EltwiseMulnChw16cNCKernelImpl<float>::useJIT(int d) {
  return true;
}
#endif
#endif

T
tensor-tang 已提交
224 225 226 227
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
T
tensor-tang 已提交
228
  JITKERNEL_DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
229
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
T
tensor-tang 已提交
230
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
231
    if (useJIT(d)) {
232
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
233
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, true,
T
tensor-tang 已提交
234
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
235 236 237 238
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
239
#endif
240
    this->Compute = refer::VAddRelu<T>;
T
tensor-tang 已提交
241
  }
T
fix mac  
tensor-tang 已提交
242
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
243 244

 private:
T
tensor-tang 已提交
245
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
246
#endif
T
tensor-tang 已提交
247 248
};

T
tensor-tang 已提交
249
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
250 251
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
252
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
253
}
T
tensor-tang 已提交
254 255
#endif

T
tensor-tang 已提交
256 257
/* VScal JitKernel */
template <typename T>
T
tensor-tang 已提交
258 259
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
260
  JITKERNEL_DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
261 262 263
  explicit VScalKernelImpl(int d) : VScalKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
264
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
265 266
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 1, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
267 268 269
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
270
    }
T
tensor-tang 已提交
271
#endif
T
tensor-tang 已提交
272
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
273 274 275 276
    if (useMKL(d)) {
      this->Compute = VScalMKL<T>;
      return;
    }
T
tensor-tang 已提交
277
#endif
278
    this->Compute = refer::VScal<T>;
T
tensor-tang 已提交
279
  }
T
tensor-tang 已提交
280
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
281

T
tensor-tang 已提交
282
 private:
T
tensor-tang 已提交
283
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
284
#endif
T
tensor-tang 已提交
285 286 287 288 289
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VScalKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
290
  return gen::VXXJitCode::init(d, 1);
T
tensor-tang 已提交
291
}
T
tensor-tang 已提交
292 293
#endif

T
tensor-tang 已提交
294 295 296 297 298 299 300 301 302
#ifdef PADDLE_WITH_MKLML
template <>
bool VScalKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
template <>
bool VScalKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
303
#endif
T
tensor-tang 已提交
304

T
tensor-tang 已提交
305
/* VAddBias JitKernel */
T
tensor-tang 已提交
306
template <typename T>
T
tensor-tang 已提交
307 308
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
309
  JITKERNEL_DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
310 311 312
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
313
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
314 315 316 317 318
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 1, false,
                                         sz > 4096 ? sz : 4096));
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
319
    }
T
tensor-tang 已提交
320
#endif
T
tensor-tang 已提交
321

322
    this->Compute = refer::VAddBias<T>;
T
tensor-tang 已提交
323
  }
T
tensor-tang 已提交
324
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
325

T
tensor-tang 已提交
326 327
 private:
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
328
#endif
T
tensor-tang 已提交
329 330 331 332 333 334 335
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VAddBiasKernelImpl<float>::useJIT(int d) {
  return gen::VXXJitCode::init(d, 1);
}
T
tensor-tang 已提交
336 337
#endif

T
tensor-tang 已提交
338
/* VRelu JitKernel */
T
tensor-tang 已提交
339
template <typename T>
T
tensor-tang 已提交
340 341
class VReluKernelImpl : public VReluKernel<T> {
 public:
T
tensor-tang 已提交
342
  JITKERNEL_DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
343 344 345
  explicit VReluKernelImpl(int d) : VReluKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
T
tensor-tang 已提交
346
      size_t sz = 96 /* init size */ +
347
                  d / YMM_FLOAT_BLOCK * 4 /* instructions */ *
T
tensor-tang 已提交
348
                      8 /* average bytes for each instruction */;
349 350
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::relu,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
351 352
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
T
tensor-tang 已提交
353
    }
T
tensor-tang 已提交
354
#endif
T
tensor-tang 已提交
355

356
    this->Compute = refer::VRelu<T>;
T
tensor-tang 已提交
357
  }
T
tensor-tang 已提交
358
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
359

T
tensor-tang 已提交
360
 private:
361
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
362
#endif
T
tensor-tang 已提交
363 364 365 366 367
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VReluKernelImpl<float>::useJIT(int d) {
368
  return gen::VActJitCode::init(d, gen::operand_type::relu);
T
tensor-tang 已提交
369
}
T
tensor-tang 已提交
370 371 372
#endif

/* An empty JitKernel */
T
tensor-tang 已提交
373
template <typename T>
T
tensor-tang 已提交
374 375
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
T
tensor-tang 已提交
376 377
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() {
378
    this->Compute = refer::VIdentity<T>;
T
tensor-tang 已提交
379
  }
T
tensor-tang 已提交
380 381
};

T
tensor-tang 已提交
382 383 384 385 386 387 388
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddbias, VAddBiasKernel);
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
389 390 391
#ifdef PADDLE_WITH_MKLDNN
REGISTER_JITKERNEL(eltwise_mul_nchw16c, EltwiseMulnChw16cNCKernel);
#endif
T
tensor-tang 已提交
392 393 394 395 396

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle