Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3d928d4f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3d928d4f
编写于
9月 28, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine and seepdup
上级
77fc42d2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
103 addition
and
108 deletion
+103
-108
paddle/fluid/operators/math/jit_kernel.cc
paddle/fluid/operators/math/jit_kernel.cc
+0
-23
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+3
-5
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+100
-80
未找到文件。
paddle/fluid/operators/math/jit_kernel.cc
浏览文件 @
3d928d4f
...
...
@@ -35,29 +35,6 @@ const std::shared_ptr<Kernel> KernelPool::Get(const std::string& key) const {
return
kers_
.
at
(
key
);
}
#define DEFINE_WITH_DTYPE(ker_key, ker_class, ker_dtype, dtype_key) \
template <> \
const std::shared_ptr<ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>>(int d) { \
std::string key = #ker_key #dtype_key + std::to_string(d); \
if (kers_.find(key) == kers_.end()) { \
auto p = std::make_shared<ker_class<ker_dtype>>(d); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<ker_class<ker_dtype>>(kers_.at(key)); \
}
#define REGISTER_BLAS_JITKERNEL(ker_key, ker_class) \
DEFINE_WITH_DTYPE(ker_key, ker_class, float, f); \
DEFINE_WITH_DTYPE(ker_key, ker_class, double, d)
REGISTER_BLAS_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_BLAS_JITKERNEL
(
vadd
,
VAddKernel
);
#undef REGISTER_BLAS_JITKERNEL
#undef DEFINE_WITH_DTYPE
template
<
>
const
std
::
shared_ptr
<
LSTMKernel
<
float
>>
KernelPool
::
Get
<
LSTMKernel
<
float
>
,
int
,
const
std
::
string
&
,
const
std
::
string
&
,
...
...
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
3d928d4f
...
...
@@ -40,7 +40,7 @@ typedef enum { kLT8, kEQ8, kGT8LT16, kEQ16, kGT16 } jit_block;
class
Kernel
{
public:
Kernel
()
{}
Kernel
()
=
default
;
virtual
~
Kernel
()
=
default
;
private:
...
...
@@ -66,15 +66,13 @@ class KernelPool {
template
<
typename
T
>
class
VMulKernel
:
public
Kernel
{
public:
explicit
VMulKernel
(
int
n
);
void
(
*
Compute
)(
const
int
n
,
const
T
*
,
const
T
*
,
T
*
);
virtual
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
=
0
;
};
template
<
typename
T
>
class
VAddKernel
:
public
Kernel
{
public:
explicit
VAddKernel
(
int
n
);
void
(
*
Compute
)(
const
int
n
,
const
T
*
,
const
T
*
,
T
*
);
virtual
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
=
0
;
};
template
<
typename
T
>
...
...
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
3d928d4f
...
...
@@ -29,17 +29,21 @@ namespace jitkernel {
namespace
jit
=
platform
::
jit
;
#define NEW_IMPL(src, t, isa, k) \
p = std::dynamic_pointer_cast<src<t>>( \
std::make_shared<src##Impl<t, isa, k>>())
#define SEARCH_BLOCK(src, t, isa) \
if (d < AVX_FLOAT_BLOCK) { \
Compute = src<t, isa, kLT8>
; \
NEW_IMPL(src, t, isa, kLT8)
; \
} else if (d == AVX_FLOAT_BLOCK) { \
Compute = src<t, isa, kEQ8>
; \
NEW_IMPL(src, t, isa, kEQ8)
; \
} else if (d > AVX_FLOAT_BLOCK && d < AVX512_FLOAT_BLOCK) { \
Compute = src<t, isa, kGT8LT16>
; \
NEW_IMPL(src, t, isa, kGT8LT16)
; \
} else if (d == AVX512_FLOAT_BLOCK) { \
Compute = src<t, isa, kEQ16>
; \
NEW_IMPL(src, t, isa, kEQ16)
; \
} else { \
Compute = src<t, isa, kGT16>
; \
NEW_IMPL(src, t, isa, kGT16)
; \
}
#define SEARCH_ISA_BLOCK(src, t) \
...
...
@@ -53,6 +57,24 @@ namespace jit = platform::jit;
SEARCH_BLOCK(src, t, jit::isa_any); \
}
#define DEFINE_WITH_DTYPE(ker_key, ker_class, ker_dtype, dtype_key) \
template <> \
const std::shared_ptr<ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>>(int d) { \
std::string key = #ker_key #dtype_key + std::to_string(d); \
if (kers_.find(key) == kers_.end()) { \
std::shared_ptr<ker_class<ker_dtype>> p; \
SEARCH_ISA_BLOCK(ker_class, ker_dtype); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<ker_class<ker_dtype>>(kers_.at(key)); \
}
#define REGISTER_BLAS_JITKERNEL(ker_key, ker_class) \
DEFINE_WITH_DTYPE(ker_key, ker_class, float, f); \
DEFINE_WITH_DTYPE(ker_key, ker_class, double, d)
// do not include lt8, eq8, eq16
#define FOR_EACH_COMMON_BLOCK(macro_, isa) \
macro_(isa, kGT8LT16) macro_(isa, kGT16)
...
...
@@ -73,132 +95,130 @@ namespace jit = platform::jit;
FOR_EACH_ALL_BLOCK(macro_, jit::avx) \
FOR_EACH_ALL_BLOCK(macro_, jit::isa_any)
#define BIND_KERNEL_WITH_DTYPE(ker_class, ker_func, ker_dtype) \
template <> \
ker_class<ker_dtype>::ker_class(int d) { \
SEARCH_ISA_BLOCK(ker_func, ker_dtype); \
}
#define BIND_KERNEL(ker_class, ker_func) \
BIND_KERNEL_WITH_DTYPE(ker_class, ker_func, float); \
BIND_KERNEL_WITH_DTYPE(ker_class, ker_func, double)
/* VMUL JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
static
void
VMulCompute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
*
y
[
i
];
class
VMulKernelImpl
:
public
VMulKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
*
y
[
i
];
}
}
}
}
;
#ifdef PADDLE_WITH_MKLML
#define VMUL_MKL_FLOAT(isa, block) \
template <> \
void VMul
Compute<float, isa, block>
(const int n, const float* x, \
const float* y, float* z) { \
platform::dynload::vsMul(n, x, y, z); \
#define VMUL_MKL_FLOAT(isa, block)
\
template <>
\
void VMul
KernelImpl<float, isa, block>::Compute
(const int n, const float* x, \
const float* y, float* z) { \
platform::dynload::vsMul(n, x, y, z);
\
}
#define VMUL_MKL_DOUBLE(isa, block)
\
template <>
\
void VMul
Compute<double, isa, block>(const int n, const double* x,
\
const double* y, double* z) { \
platform::dynload::vdMul(n, x, y, z);
\
#define VMUL_MKL_DOUBLE(isa, block) \
template <> \
void VMul
KernelImpl<double, isa, block>::Compute(
\
const int n, const double* x,
const double* y, double* z) { \
platform::dynload::vdMul(n, x, y, z); \
}
FOR_EACH_ISA_COMMON_BLOCK
(
VMUL_MKL_FLOAT
)
FOR_EACH_ISA_ALL_BLOCK
(
VMUL_MKL_DOUBLE
)
FOR_EACH_ISA_COMMON_BLOCK
(
VMUL_MKL_FLOAT
)
;
FOR_EACH_ISA_ALL_BLOCK
(
VMUL_MKL_DOUBLE
)
;
#endif
/// eq8
#define VMUL_INTRI8_FLOAT(isa) \
template <> \
void VMulCompute<float, isa, kEQ8>(const int n, const float* x, \
const float* y, float* z) { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_mul_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
#define VMUL_INTRI8_FLOAT(isa) \
template <> \
void VMulKernelImpl<float, isa, kEQ8>::Compute(const int n, const float* x, \
const float* y, float* z) { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_mul_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
}
// avx > for > mkl
#ifdef __AVX__
VMUL_INTRI8_FLOAT
(
jit
::
avx
);
#endif
// avx2 > for > mkl
#ifdef __AVX2__
VMUL_INTRI8_FLOAT
(
jit
::
avx2
)
VMUL_INTRI8_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
VMUL_INTRI8_FLOAT
(
jit
::
avx512f
);
#endif
// TODO(TJ): test and complete avx512
// TODO(TJ): eq16 test and complete avx512
#undef VMUL_INTRI8_FLOAT
#undef VMUL_MKL_FLOAT
#undef VMUL_MKL_DOUBLE
/* VADD */
/* VADD
JitKernel
*/
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
static
void
VAddCompute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
+
y
[
i
];
class
VAddKernelImpl
:
public
VAddKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
+
y
[
i
];
}
}
}
}
;
#ifdef PADDLE_WITH_MKLML
#define VADD_MKL_FLOAT(isa, block) \
template <> \
void VAdd
Compute<float, isa, block>
(const int n, const float* x, \
const float* y, float* z) { \
platform::dynload::vsAdd(n, x, y, z); \
#define VADD_MKL_FLOAT(isa, block)
\
template <>
\
void VAdd
KernelImpl<float, isa, block>::Compute
(const int n, const float* x, \
const float* y, float* z) { \
platform::dynload::vsAdd(n, x, y, z);
\
}
#define VADD_MKL_DOUBLE(isa, block)
\
template <>
\
void VAdd
Compute<double, isa, block>(const int n, const double* x,
\
const double* y, double* z) { \
platform::dynload::vdAdd(n, x, y, z);
\
#define VADD_MKL_DOUBLE(isa, block) \
template <> \
void VAdd
KernelImpl<double, isa, block>::Compute(
\
const int n, const double* x,
const double* y, double* z) { \
platform::dynload::vdAdd(n, x, y, z); \
}
FOR_EACH_ISA_COMMON_BLOCK
(
VADD_MKL_FLOAT
)
FOR_EACH_ISA_ALL_BLOCK
(
VADD_MKL_DOUBLE
)
FOR_EACH_ISA_COMMON_BLOCK
(
VADD_MKL_FLOAT
)
;
FOR_EACH_ISA_ALL_BLOCK
(
VADD_MKL_DOUBLE
)
;
#endif
/// eq8
#define VADD_INTRI8_FLOAT(isa) \
template <> \
void VAddCompute<float, isa, kEQ8>(const int n, const float* x, \
const float* y, float* z) { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_add_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
#define VADD_INTRI8_FLOAT(isa) \
template <> \
void VAddKernelImpl<float, isa, kEQ8>::Compute(const int n, const float* x, \
const float* y, float* z) { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_add_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
}
#ifdef __AVX__
VADD_INTRI8_FLOAT
(
jit
::
avx
)
VADD_INTRI8_FLOAT
(
jit
::
avx
)
;
#endif
#ifdef __AVX2__
VADD_INTRI8_FLOAT
(
jit
::
avx2
)
VADD_INTRI8_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
VADD_INTRI8_FLOAT
(
jit
::
avx512f
);
#endif
// TODO(TJ): test and complete avx512
// TODO(TJ):
eq16
test and complete avx512
#undef VADD_INTRI8_FLOAT
#undef VADD_MKL_FLOAT
#undef VADD_MKL_DOUBLE
BIND_KERNEL
(
VMulKernel
,
VMulCompute
);
BIND_KERNEL
(
VAddKernel
,
VAddCompute
);
REGISTER_BLAS_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_BLAS_JITKERNEL
(
vadd
,
VAddKernel
);
#undef BIND_KERNEL
#undef BIND_KERNEL_WITH_DTYPE
#undef FOR_EACH_ISA_ALL_BLOCK
#undef FOR_EACH_ALL_BLOCK
#undef FOR_EACH_ISA_COMMON_BLOCK
#undef FOR_EACH_COMMON_BLOCK
#undef REGISTER_BLAS_JITKERNEL
#undef DEFINE_WITH_DTYPE
#undef SEARCH_ISA_BLOCK
#undef SEARCH_BLOCK
#undef NEW_IMPL
}
// namespace jitkernel
}
// namespace math
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录