jit_kernel_blas.cc 14.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

28 29 30 31
#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
32 33 34 35 36 37
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

T
tensor-tang 已提交
38 39 40 41
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
42
  }
T
tensor-tang 已提交
43
}
T
tensor-tang 已提交
44

T
tensor-tang 已提交
45 46 47 48 49 50 51
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
52 53 54 55 56 57 58 59
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
60 61 62 63 64 65 66
template <typename T>
void VScalRefer(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] * x[i];
  }
}

T
tensor-tang 已提交
67 68 69 70 71 72 73
template <typename T>
void VAddBiasRefer(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] + x[i];
  }
}

T
tensor-tang 已提交
74 75 76 77 78 79 80 81
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
82

T
tensor-tang 已提交
83 84 85 86
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

template <typename T>
void VScalMKL(const T* a, const T* x, T* y, int n);

template <>
void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
  if (x == y) {
    platform::dynload::cblas_sscal(n, *a, y, 1);
  } else {
    VScalRefer<float>(a, x, y, n);
  }
}

template <>
void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
  if (x == y) {
    platform::dynload::cblas_dscal(n, *a, y, 1);
  } else {
    VScalRefer<double>(a, x, y, n);
  }
}

T
tensor-tang 已提交
122 123
#endif

T
tensor-tang 已提交
124 125 126 127 128 129 130
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

T
tensor-tang 已提交
131
/* VMUL JitKernel */
T
tensor-tang 已提交
132
template <typename T>
T
tensor-tang 已提交
133 134
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
135
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
136
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
137
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
138
    if (useJIT(d)) {
T
tensor-tang 已提交
139 140
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
141
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 0, false,
T
tensor-tang 已提交
142
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
143 144 145 146
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
147
#endif
T
tensor-tang 已提交
148
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
149 150 151 152
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
153
#endif
T
tensor-tang 已提交
154
    this->Compute = VMulRefer<T>;
T
tensor-tang 已提交
155 156
  }

T
tensor-tang 已提交
157
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
158

T
tensor-tang 已提交
159
 private:
T
tensor-tang 已提交
160
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
161
#endif
T
tensor-tang 已提交
162
};
T
tensor-tang 已提交
163

T
tensor-tang 已提交
164
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
165 166
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
167
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
168
}
T
tensor-tang 已提交
169
#endif
T
tensor-tang 已提交
170

T
tensor-tang 已提交
171
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
172 173 174 175 176 177 178 179 180
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
181
#endif
T
tensor-tang 已提交
182

T
tensor-tang 已提交
183 184
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
185 186
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
187 188
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
T
tensor-tang 已提交
189
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
190 191
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
192
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, false,
T
tensor-tang 已提交
193
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
194 195 196
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
197
    }
T
tensor-tang 已提交
198
#endif
T
tensor-tang 已提交
199 200 201 202
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
T
tensor-tang 已提交
203
    }
T
tensor-tang 已提交
204 205
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
206
  }
T
fix mac  
tensor-tang 已提交
207
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
208 209

 private:
T
tensor-tang 已提交
210
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
211
#endif
T
tensor-tang 已提交
212
};
T
tensor-tang 已提交
213

T
tensor-tang 已提交
214
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
215 216
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
217
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
218
}
T
tensor-tang 已提交
219
#endif
T
tensor-tang 已提交
220

T
tensor-tang 已提交
221
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
222 223 224 225
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
226

T
tensor-tang 已提交
227 228 229 230
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
231 232
#endif

T
tensor-tang 已提交
233 234 235 236 237 238
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
T
tensor-tang 已提交
239
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
240 241
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
242
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, true,
T
tensor-tang 已提交
243
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
244 245 246 247
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
248
#endif
T
tensor-tang 已提交
249 250
    this->Compute = VAddReluRefer<T>;
  }
T
fix mac  
tensor-tang 已提交
251
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
252 253

 private:
T
tensor-tang 已提交
254
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
255
#endif
T
tensor-tang 已提交
256 257
};

T
tensor-tang 已提交
258
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
259 260
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
261
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
262
}
T
tensor-tang 已提交
263 264
#endif

T
tensor-tang 已提交
265 266
/* VScal JitKernel */
template <typename T>
T
tensor-tang 已提交
267 268
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
269 270 271 272 273
  DECLARE_STATIC_FUNC;
  explicit VScalKernelImpl(int d) : VScalKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
274 275
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 1, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
276 277 278
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
279
    }
T
tensor-tang 已提交
280
#endif
T
tensor-tang 已提交
281
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
282 283 284 285
    if (useMKL(d)) {
      this->Compute = VScalMKL<T>;
      return;
    }
T
tensor-tang 已提交
286
#endif
T
tensor-tang 已提交
287
    this->Compute = VScalRefer<T>;
T
tensor-tang 已提交
288
  }
T
tensor-tang 已提交
289
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
290

T
tensor-tang 已提交
291
 private:
T
tensor-tang 已提交
292
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
293
#endif
T
tensor-tang 已提交
294 295 296 297 298
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VScalKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
299
  return gen::VXXJitCode::init(d, 1);
T
tensor-tang 已提交
300
}
T
tensor-tang 已提交
301 302
#endif

T
tensor-tang 已提交
303 304 305 306 307 308 309 310 311
#ifdef PADDLE_WITH_MKLML
template <>
bool VScalKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
template <>
bool VScalKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
312
#endif
T
tensor-tang 已提交
313

T
tensor-tang 已提交
314
/* VAddBias JitKernel */
T
tensor-tang 已提交
315
template <typename T>
T
tensor-tang 已提交
316 317
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
318 319 320 321 322 323 324 325 326 327
  DECLARE_STATIC_FUNC;
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 1, false,
                                         sz > 4096 ? sz : 4096));
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
328
    }
T
tensor-tang 已提交
329
#endif
T
tensor-tang 已提交
330

T
tensor-tang 已提交
331
    this->Compute = VAddBiasRefer<T>;
T
tensor-tang 已提交
332
  }
T
tensor-tang 已提交
333
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
334

T
tensor-tang 已提交
335 336
 private:
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
337
#endif
T
tensor-tang 已提交
338 339 340 341 342 343 344
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VAddBiasKernelImpl<float>::useJIT(int d) {
  return gen::VXXJitCode::init(d, 1);
}
T
tensor-tang 已提交
345 346
#endif

T
tensor-tang 已提交
347 348 349 350 351 352 353
#undef DECLARE_STATIC_FUNC

REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddbias, VAddBiasKernel);
T
tensor-tang 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
451 452 453 454 455
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
456 457 458 459 460 461 462 463
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
464 465
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
466 467 468 469 470

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle