Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f2adaf1c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2adaf1c
编写于
10月 08, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vrelu and lstm kernel
test=develop
上级
e6d8aca3
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
269 addition
and
75 deletion
+269
-75
paddle/fluid/operators/math/jit_kernel.cc
paddle/fluid/operators/math/jit_kernel.cc
+0
-17
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+21
-12
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+109
-0
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+1
-0
paddle/fluid/operators/math/jit_kernel_lstm.cc
paddle/fluid/operators/math/jit_kernel_lstm.cc
+84
-46
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+54
-0
未找到文件。
paddle/fluid/operators/math/jit_kernel.cc
浏览文件 @
f2adaf1c
...
...
@@ -35,23 +35,6 @@ std::shared_ptr<const Kernel> KernelPool::Get(const std::string& key) const {
return
kers_
.
at
(
key
);
}
template
<
>
std
::
shared_ptr
<
const
LSTMKernel
<
float
>>
KernelPool
::
Get
<
LSTMKernel
<
float
>
,
int
,
const
std
::
string
&
,
const
std
::
string
&
,
const
std
::
string
&>
(
int
d
,
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_cand
,
const
std
::
string
&
act_cell
)
{
std
::
string
key
=
"lstmf"
+
std
::
to_string
(
d
)
+
act_gate
+
act_cand
+
act_cell
;
if
(
kers_
.
find
(
key
)
==
kers_
.
end
())
{
auto
p
=
std
::
make_shared
<
LSTMKernel
<
float
>>
(
d
,
act_gate
,
act_cand
,
act_cell
);
kers_
.
insert
({
key
,
std
::
dynamic_pointer_cast
<
Kernel
>
(
p
)});
return
p
;
}
return
std
::
dynamic_pointer_cast
<
const
LSTMKernel
<
float
>>
(
kers_
.
at
(
key
));
}
}
// namespace jitkernel
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
f2adaf1c
...
...
@@ -87,36 +87,45 @@ class VAddBiasKernel : public Kernel {
};
template
<
typename
T
>
class
V
Exp
Kernel
:
public
Kernel
{
class
V
Act
Kernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
V
SigmoidKernel
:
public
Kernel
{
class
V
ReluKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
V
TanhKernel
:
public
Kernel
{
class
V
IdentityKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
LSTMKernel
:
public
Kernel
{
class
VExpKernel
:
public
VActKernel
<
T
>
{
public:
explicit
LSTMKernel
(
int
d
,
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_cand
,
const
std
::
string
&
act_cell
)
;
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
}
;
void
(
*
jit_ker
)(
T
*
,
const
T
*
,
T
*
,
T
*
);
std
::
function
<
void
(
T
*
,
const
T
*
,
T
*
,
T
*
)
>
ComputeCtHt
,
ComputeCtHt_NoC0H0
;
template
<
typename
T
>
class
VSigmoidKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
private:
int
d_
,
d2_
,
d3_
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate_
,
act_cell_
,
act_cand_
;
template
<
typename
T
>
class
VTanhKernel
:
public
VActKernel
<
T
>
{
public:
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
LSTMKernel
:
public
Kernel
{
public:
virtual
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
)
const
=
0
;
};
}
// namespace jitkernel
...
...
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
f2adaf1c
...
...
@@ -266,15 +266,124 @@ INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
/* VRelu JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VReluKernelImpl
:
public
VReluKernel
<
T
>
{
public:
explicit
VReluKernelImpl
(
int
d
)
:
VReluKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
};
#define INTRI8_FLOAT(isa) \
template <> \
void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
const { \
__m256 tmp = _mm256_loadu_ps(x); \
tmp = _mm256_max_ps(tmp, _mm256_setzero_ps()); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI16_FLOAT(isa) \
template <> \
void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
const { \
__m256 zeros = _mm256_setzero_ps(); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = _mm256_max_ps(tmp0, zeros); \
tmp1 = _mm256_max_ps(tmp1, zeros); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#define INTRI_GT8LT16_FLOAT(isa) \
template <> \
VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d) \
: VReluKernel<float>() { \
this->num_ = d; \
this->end_ = AVX_FLOAT_BLOCK; \
this->rest_ = d - AVX_FLOAT_BLOCK; \
} \
template <> \
void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x, \
float* y) const { \
__m256 zeros = _mm256_setzero_ps(); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + this->rest_); \
tmp0 = _mm256_max_ps(tmp0, zeros); \
tmp1 = _mm256_max_ps(tmp1, zeros); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + this->rest_, tmp1); \
}
#define INTRI_GT16_FLOAT(isa) \
template <> \
VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d) \
: VReluKernel<float>() { \
this->num_ = d; \
this->end_ = d - d % AVX_FLOAT_BLOCK; \
this->rest_ = d - AVX_FLOAT_BLOCK; \
} \
template <> \
void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
const { \
__m256 zeros = _mm256_setzero_ps(); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_max_ps(tmp, zeros); \
_mm256_storeu_ps(y + i, tmp); \
} \
__m256 tmp = _mm256_loadu_ps(x + this->rest_); \
tmp = _mm256_max_ps(tmp, zeros); \
_mm256_storeu_ps(y + this->rest_, tmp); \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
INTRI16_FLOAT
(
jit
::
avx
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx
);
INTRI_GT16_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
INTRI16_FLOAT
(
jit
::
avx2
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx2
);
INTRI_GT16_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT
(
jit
::
avx512f
);
INTRI16_FLOAT
(
jit
::
avx512f
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx512f
);
INTRI_GT16_FLOAT
(
jit
::
avx512f
);
#endif
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
/* An empty JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VIdentityKernelImpl
:
public
VIdentityKernel
<
T
>
{
public:
explicit
VIdentityKernelImpl
(
int
d
)
:
VIdentityKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{}
};
REGISTER_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_JITKERNEL
(
vadd
,
VAddKernel
);
REGISTER_JITKERNEL
(
vscal
,
VScalKernel
);
REGISTER_JITKERNEL
(
vaddb
,
VAddBiasKernel
);
REGISTER_JITKERNEL
(
vrelu
,
VReluKernel
);
REGISTER_JITKERNEL
(
videntity
,
VIdentityKernel
);
}
// namespace jitkernel
}
// namespace math
...
...
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
f2adaf1c
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <cmath> // for exp
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
...
...
paddle/fluid/operators/math/jit_kernel_lstm.cc
浏览文件 @
f2adaf1c
...
...
@@ -13,9 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <functional>
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -24,51 +28,85 @@ namespace jitkernel {
namespace
jit
=
platform
::
jit
;
template
<
>
LSTMKernel
<
float
>::
LSTMKernel
(
int
d
,
const
std
::
string
&
act_gate_str
,
const
std
::
string
&
act_cand_str
,
const
std
::
string
&
act_cell_str
)
:
Kernel
(),
d_
(
d
)
{
d2_
=
d
*
2
;
d3_
=
d
*
3
;
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx512f
))
{
math
::
VecActivations
<
float
,
platform
::
jit
::
avx512f
>
act_functor
;
act_gate_
=
act_functor
(
act_gate_str
);
act_cell_
=
act_functor
(
act_cell_str
);
act_cand_
=
act_functor
(
act_cand_str
);
}
else
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx2
))
{
math
::
VecActivations
<
float
,
platform
::
jit
::
avx2
>
act_functor
;
act_gate_
=
act_functor
(
act_gate_str
);
act_cell_
=
act_functor
(
act_cell_str
);
act_cand_
=
act_functor
(
act_cand_str
);
}
else
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
float
,
platform
::
jit
::
avx
>
act_functor
;
act_gate_
=
act_functor
(
act_gate_str
);
act_cell_
=
act_functor
(
act_cell_str
);
act_cand_
=
act_functor
(
act_cand_str
);
// ComputeCtHt = [&](float*gates,const float*ct_1,float*ct, float*ht) {
// // gates: W_ch, W_ih, W_fh, W_oh
// act_gate(d3_, gates + d_, gates + d_);
// /* C_t = C_t-1 * fgated + cand_gated * igated */
// act_cand(d_, gates, gates);
// blas.VMUL(d_, gates, gates + d_, gates + d_);
// blas.VMUL(d_, ct_1, gates + d2_, gates + d2_);
// blas.VADD(d_, gates + d_, gates + d2_, ct);
// /* H_t = act_cell(C_t) * ogated */
// act_cell(d_, ct, gates + d2_);
// blas.VMUL(d_, gates + d2_, gates + d3_, ht)
// GET_Ct(ct_1, gates, ct);
// GET_Ht(ct, gates, ht);
// };
}
else
{
math
::
VecActivations
<
float
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate_
=
act_functor
(
act_gate_str
);
act_cell_
=
act_functor
(
act_cell_str
);
act_cand_
=
act_functor
(
act_cand_str
);
/* LSTM JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
public:
explicit
LSTMKernelImpl
(
int
d
,
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_cand
,
const
std
::
string
&
act_cell
)
:
LSTMKernel
<
T
>
()
{
d_
=
d
;
d2_
=
d
*
2
;
d3_
=
d
*
3
;
auto
GetActKernel
=
[
&
](
const
std
::
string
&
type
,
int
n
)
->
std
::
shared_ptr
<
const
VActKernel
<
T
>>
{
if
(
type
==
"sigmoid"
)
{
return
std
::
dynamic_pointer_cast
<
const
VActKernel
<
T
>>
(
KernelPool
::
Instance
().
template
Get
<
VSigmoidKernel
<
T
>
>
(
n
));
}
else
if
(
type
==
"relu"
)
{
return
std
::
dynamic_pointer_cast
<
const
VActKernel
<
T
>>
(
KernelPool
::
Instance
().
template
Get
<
VReluKernel
<
T
>
>
(
n
));
}
else
if
(
type
==
"tanh"
)
{
return
std
::
dynamic_pointer_cast
<
const
VActKernel
<
T
>>
(
KernelPool
::
Instance
().
template
Get
<
VTanhKernel
<
T
>
>
(
n
));
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
dynamic_pointer_cast
<
const
VActKernel
<
T
>>
(
KernelPool
::
Instance
().
template
Get
<
VIdentityKernel
<
T
>
>
(
n
));
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
};
act_gate_3d_
=
GetActKernel
(
act_gate
,
d
*
3
);
act_cand_d_
=
GetActKernel
(
act_cand
,
d
);
act_cell_d_
=
GetActKernel
(
act_cell
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
vadd_d_
=
KernelPool
::
Instance
().
template
Get
<
VAddKernel
<
T
>
>
(
d
);
}
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
)
const
override
{
// gates: W_ch, W_ih, W_fh, W_oh
act_gate_3d_
->
Compute
(
gates
+
d_
,
gates
+
d_
);
/* C_t = C_t-1 * fgated + cand_gated * igated */
act_cand_d_
->
Compute
(
gates
,
gates
);
vmul_d_
->
Compute
(
gates
,
gates
+
d_
,
gates
+
d_
);
vmul_d_
->
Compute
(
ct_1
,
gates
+
d2_
,
gates
+
d2_
);
vadd_d_
->
Compute
(
gates
+
d_
,
gates
+
d2_
,
ct
);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_
->
Compute
(
ct
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
+
d2_
,
gates
+
d3_
,
ht
);
}
}
private:
int
d_
,
d2_
,
d3_
;
std
::
shared_ptr
<
const
VActKernel
<
T
>>
act_gate_3d_
,
act_cand_d_
,
act_cell_d_
;
std
::
shared_ptr
<
const
VMulKernel
<
T
>>
vmul_d_
;
std
::
shared_ptr
<
const
VAddKernel
<
T
>>
vadd_d_
;
};
#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>, int, const std::string&, \
const std::string&, const std::string&>( \
int d, const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell)
#define JITKERNEL_KEY_LSTM(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell
#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(d, act_gate, act_cand, \
act_cell))
REGISTER_JITKERNEL_ARGS
(
lstm
,
LSTMKernel
,
JITKERNEL_DECLARE_LSTM
,
JITKERNEL_KEY_LSTM
,
JITKERNEL_NEW_LSTM_IMPL
);
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
}
// namespace jitkernel
}
// namespace math
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
f2adaf1c
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <sys/time.h>
#include <cmath> // for exp
#include <cstring> // for memcpy
#include <string>
#include <vector>
...
...
@@ -48,6 +49,59 @@ void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
}
}
void
vrelu_ref
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0.
f
?
x
[
i
]
:
0.
f
;
}
}
#if defined __AVX__ || defined __AVX2__
void
vrelu_intri8
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
__m256
tmp
=
_mm256_loadu_ps
(
x
);
tmp
=
_mm256_max_ps
(
tmp
,
_mm256_setzero_ps
());
_mm256_storeu_ps
(
y
,
tmp
);
}
#endif
TEST
(
JitKernel
,
vrelu
)
{
namespace
jit
=
paddle
::
operators
::
math
::
jitkernel
;
for
(
int
d
:
{
7
,
8
,
15
,
16
,
30
,
256
,
512
})
{
std
::
vector
<
float
>
x
(
d
);
std
::
vector
<
float
>
zref
(
d
),
ztgt
(
d
);
RandomVec
<
float
>
(
d
,
x
.
data
(),
-
10.
f
,
1.
f
);
const
auto
&
ker
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VReluKernel
<
float
>
>
(
d
);
const
float
*
x_data
=
x
.
data
();
float
*
ztgt_data
=
ztgt
.
data
();
float
*
zref_data
=
zref
.
data
();
auto
trefs
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
vrelu_ref
(
d
,
x_data
,
zref_data
);
}
auto
trefe
=
GetCurrentUS
();
#if defined __AVX__ || defined __AVX2__
if
(
d
==
8
)
{
auto
si0
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
vrelu_intri8
(
d
,
x_data
,
zref_data
);
}
auto
si1
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Vec size 8 intr takes: "
<<
(
si1
-
si0
)
/
repeat
;
}
#endif
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Vec size "
<<
d
<<
": refer takes: "
<<
(
trefe
-
trefs
)
/
repeat
<<
" us, tgt takes: "
<<
(
ttgte
-
ttgts
)
/
repeat
;
for
(
int
i
=
0
;
i
<
d
;
++
i
)
{
EXPECT_NEAR
(
ztgt_data
[
i
],
zref_data
[
i
],
1e-3
);
}
}
}
void
vaddbias_ref
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
a
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录