test_gaussian_random_op.py 12.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import unittest
19
import numpy as np
L
Leo Chen 已提交
20
import paddle
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
25
from paddle.fluid.tests.unittests.op_test import OpTest, convert_uint16_to_float
26
from paddle.fluid.framework import _test_eager_guard
27
import paddle
28 29


30
class TestGaussianRandomOp(OpTest):
D
dzhwinter 已提交
31 32
    def setUp(self):
        self.op_type = "gaussian_random"
33
        self.python_api = paddle.normal
34
        self.set_attrs()
D
dzhwinter 已提交
35
        self.inputs = {}
M
mozga-intel 已提交
36 37
        self.use_mkldnn = False
        self.attrs = {
38
            "shape": [123, 92],
39 40
            "mean": self.mean,
            "std": self.std,
M
mozga-intel 已提交
41 42 43
            "seed": 10,
            "use_mkldnn": self.use_mkldnn
        }
C
cnn 已提交
44
        paddle.seed(10)
D
dzhwinter 已提交
45

46
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
47

48 49 50 51
    def set_attrs(self):
        self.mean = 1.0
        self.std = 2.

52 53
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
54

55 56 57 58
    def test_eager(self):
        with _test_eager_guard():
            self.test_check_output()

59 60 61 62 63 64 65 66 67 68 69 70 71
    def verify_output(self, outs):
        self.assertEqual(outs[0].shape, (123, 92))
        hist, _ = np.histogram(outs[0], range=(-3, 5))
        hist = hist.astype("float32")
        hist /= float(outs[0].size)
        data = np.random.normal(size=(123, 92), loc=1, scale=2)
        hist2, _ = np.histogram(data, range=(-3, 5))
        hist2 = hist2.astype("float32")
        hist2 /= float(outs[0].size)
        self.assertTrue(
            np.allclose(
                hist, hist2, rtol=0, atol=0.01),
            "hist: " + str(hist) + " hist2: " + str(hist2))
72

D
dongzhihong 已提交
73

74 75 76 77 78
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestGaussianRandomBF16Op(OpTest):
    def setUp(self):
        self.op_type = "gaussian_random"
79
        self.python_api = paddle.normal
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        self.set_attrs()
        self.inputs = {}
        self.use_mkldnn = False
        self.attrs = {
            "shape": [123, 92],
            "mean": self.mean,
            "std": self.std,
            "seed": 10,
            "dtype": paddle.fluid.core.VarDesc.VarType.BF16,
            "use_mkldnn": self.use_mkldnn
        }
        paddle.seed(10)

        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}

    def set_attrs(self):
        self.mean = 1.0
        self.std = 2.

    def test_check_output(self):
        self.check_output_with_place_customized(
            self.verify_output, place=core.CUDAPlace(0))

103 104 105 106
    def test_eager(self):
        with _test_eager_guard():
            self.test_check_output()

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def verify_output(self, outs):
        outs = convert_uint16_to_float(outs)
        self.assertEqual(outs[0].shape, (123, 92))
        hist, _ = np.histogram(outs[0], range=(-3, 5))
        hist = hist.astype("float32")
        hist /= float(outs[0].size)
        data = np.random.normal(size=(123, 92), loc=1, scale=2)
        hist2, _ = np.histogram(data, range=(-3, 5))
        hist2 = hist2.astype("float32")
        hist2 /= float(outs[0].size)
        self.assertTrue(
            np.allclose(
                hist, hist2, rtol=0, atol=0.05),
            "hist: " + str(hist) + " hist2: " + str(hist2))


123 124 125 126 127 128
class TestMeanStdAreInt(TestGaussianRandomOp):
    def set_attrs(self):
        self.mean = 1
        self.std = 2


129 130 131 132 133 134 135 136 137 138 139
# Situation 2: Attr(shape) is a list(with tensor)
class TestGaussianRandomOp_ShapeTensorList(TestGaussianRandomOp):
    def setUp(self):
        '''Test gaussian_random op with specified value
        '''
        self.op_type = "gaussian_random"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
D
dzhwinter 已提交
140

141 142 143 144 145 146 147
        self.attrs = {
            'shape': self.infer_shape,
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
        }
D
dzhwinter 已提交
148

149 150
        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
151

152 153 154 155 156 157 158
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
D
dzhwinter 已提交
159

160 161
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
162

M
mozga-intel 已提交
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
class TestGaussianRandomOp2_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp3_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = True
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp4_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
195

196 197 198

# Situation 3: shape is a tensor
class TestGaussianRandomOp1_ShapeTensor(TestGaussianRandomOp):
199
    def setUp(self):
200 201
        '''Test gaussian_random op with specified value
        '''
202
        self.op_type = "gaussian_random"
203
        self.init_data()
204
        self.use_mkldnn = False
205 206

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
207
        self.attrs = {
208 209 210 211
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
212
        }
213
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    def init_data(self):
        self.shape = [123, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


# Test python API
class TestGaussianRandomAPI(unittest.TestCase):
    def test_api(self):
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2000)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 500)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")

        out_1 = fluid.layers.gaussian_random(
            shape=[2000, 500], dtype="float32", mean=0.0, std=1.0, seed=10)

        out_2 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int32],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_3 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int64],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_4 = fluid.layers.gaussian_random(
            shape=shape_tensor_int32,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_5 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_6 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype=np.float32,
            mean=0.,
            std=1.0,
            seed=10)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6 = exe.run(
            fluid.default_main_program(),
            feed={
                "shape_tensor_int32": np.array([2000, 500]).astype("int32"),
                "shape_tensor_int64": np.array([2000, 500]).astype("int64"),
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6])

        self.assertAlmostEqual(np.mean(res_1), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_1), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_2), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_2), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_3), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_3), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_4), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_5), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_6), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_6), 1., delta=0.1)
294

295 296 297
    def test_default_dtype(self):
        paddle.disable_static()

298
        def test_default_fp16():
299
            paddle.framework.set_default_dtype('float16')
300
            paddle.tensor.random.gaussian([2, 3])
301

302
        self.assertRaises(TypeError, test_default_fp16)
303

304
        def test_default_fp32():
305
            paddle.framework.set_default_dtype('float32')
306
            out = paddle.tensor.random.gaussian([2, 3])
307 308
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

309
        def test_default_fp64():
310
            paddle.framework.set_default_dtype('float64')
311
            out = paddle.tensor.random.gaussian([2, 3])
312 313
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

314 315
        test_default_fp64()
        test_default_fp32()
316 317 318 319 320 321 322 323

        paddle.enable_static()


class TestStandardNormalDtype(unittest.TestCase):
    def test_default_dtype(self):
        paddle.disable_static()

324
        def test_default_fp16():
325 326 327
            paddle.framework.set_default_dtype('float16')
            paddle.tensor.random.standard_normal([2, 3])

328
        self.assertRaises(TypeError, test_default_fp16)
329

330
        def test_default_fp32():
331 332 333 334
            paddle.framework.set_default_dtype('float32')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

335
        def test_default_fp64():
336 337 338 339
            paddle.framework.set_default_dtype('float64')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

340 341
        test_default_fp64()
        test_default_fp32()
342 343 344

        paddle.enable_static()

345

346 347 348 349 350 351
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

352
        # Different GPU generatte different random value. Only test V100 here.
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        def _check_random_value(dtype, expect, expect_mean, expect_std):
            x = paddle.randn([32, 3, 1024, 1024], dtype=dtype)
            actual = x.numpy()
            self.assertTrue(np.allclose(actual[2, 1, 512, 1000:1010], expect))
            self.assertTrue(np.mean(actual), expect_mean)
            self.assertTrue(np.std(actual), expect_std)

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(2021)
        expect = [
            -0.79037829, -0.54411126, -0.32266671, 0.35791815, 1.44169267,
            -0.87785644, -1.23909874, -2.18194139, 0.49489656, 0.40703062
        ]
        expect_mean = -0.0000053026194133403266873214888799115129813799285329878330230713
        expect_std = 0.99999191058126390974081232343451119959354400634765625
        _check_random_value(core.VarDesc.VarType.FP64, expect, expect_mean,
                            expect_std)

        expect = [
            -0.7988942, 1.8644791, 0.02782744, 1.3692524, 0.6419724, 0.12436751,
            0.12058455, -1.9984808, 1.5635862, 0.18506318
        ]
        expect_mean = -0.00004762359094456769526004791259765625
        expect_std = 0.999975681304931640625
        _check_random_value(core.VarDesc.VarType.FP32, expect, expect_mean,
                            expect_std)
        paddle.enable_static()


Q
qijun 已提交
387
if __name__ == "__main__":
388
    unittest.main()