test_gaussian_random_op.py 10.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import unittest
19
import numpy as np
L
Leo Chen 已提交
20
import paddle
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
25
from paddle.fluid.tests.unittests.op_test import OpTest
26
import paddle
27 28


29
class TestGaussianRandomOp(OpTest):
D
dzhwinter 已提交
30 31
    def setUp(self):
        self.op_type = "gaussian_random"
32
        self.set_attrs()
D
dzhwinter 已提交
33
        self.inputs = {}
M
mozga-intel 已提交
34 35
        self.use_mkldnn = False
        self.attrs = {
36
            "shape": [123, 92],
37 38
            "mean": self.mean,
            "std": self.std,
M
mozga-intel 已提交
39 40 41
            "seed": 10,
            "use_mkldnn": self.use_mkldnn
        }
C
cnn 已提交
42
        paddle.seed(10)
D
dzhwinter 已提交
43

44
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
45

46 47 48 49
    def set_attrs(self):
        self.mean = 1.0
        self.std = 2.

50 51
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
52

53 54 55 56 57 58 59 60 61 62 63 64 65
    def verify_output(self, outs):
        self.assertEqual(outs[0].shape, (123, 92))
        hist, _ = np.histogram(outs[0], range=(-3, 5))
        hist = hist.astype("float32")
        hist /= float(outs[0].size)
        data = np.random.normal(size=(123, 92), loc=1, scale=2)
        hist2, _ = np.histogram(data, range=(-3, 5))
        hist2 = hist2.astype("float32")
        hist2 /= float(outs[0].size)
        self.assertTrue(
            np.allclose(
                hist, hist2, rtol=0, atol=0.01),
            "hist: " + str(hist) + " hist2: " + str(hist2))
66

D
dongzhihong 已提交
67

68 69 70 71 72 73
class TestMeanStdAreInt(TestGaussianRandomOp):
    def set_attrs(self):
        self.mean = 1
        self.std = 2


74 75 76 77 78 79 80 81 82 83 84
# Situation 2: Attr(shape) is a list(with tensor)
class TestGaussianRandomOp_ShapeTensorList(TestGaussianRandomOp):
    def setUp(self):
        '''Test gaussian_random op with specified value
        '''
        self.op_type = "gaussian_random"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
D
dzhwinter 已提交
85

86 87 88 89 90 91 92
        self.attrs = {
            'shape': self.infer_shape,
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
        }
D
dzhwinter 已提交
93

94 95
        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
96

97 98 99 100 101 102 103
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
D
dzhwinter 已提交
104

105 106
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
107

M
mozga-intel 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class TestGaussianRandomOp2_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp3_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = True
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp4_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
140

141 142 143

# Situation 3: shape is a tensor
class TestGaussianRandomOp1_ShapeTensor(TestGaussianRandomOp):
144
    def setUp(self):
145 146
        '''Test gaussian_random op with specified value
        '''
147
        self.op_type = "gaussian_random"
148
        self.init_data()
149
        self.use_mkldnn = False
150 151

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
152
        self.attrs = {
153 154 155 156
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
157
        }
158
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def init_data(self):
        self.shape = [123, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


# Test python API
class TestGaussianRandomAPI(unittest.TestCase):
    def test_api(self):
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2000)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 500)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")

        out_1 = fluid.layers.gaussian_random(
            shape=[2000, 500], dtype="float32", mean=0.0, std=1.0, seed=10)

        out_2 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int32],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_3 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int64],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_4 = fluid.layers.gaussian_random(
            shape=shape_tensor_int32,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_5 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_6 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype=np.float32,
            mean=0.,
            std=1.0,
            seed=10)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6 = exe.run(
            fluid.default_main_program(),
            feed={
                "shape_tensor_int32": np.array([2000, 500]).astype("int32"),
                "shape_tensor_int64": np.array([2000, 500]).astype("int64"),
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6])

        self.assertAlmostEqual(np.mean(res_1), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_1), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_2), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_2), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_3), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_3), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_4), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_5), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_6), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_6), 1., delta=0.1)
239

240 241 242
    def test_default_dtype(self):
        paddle.disable_static()

243
        def test_default_fp16():
244
            paddle.framework.set_default_dtype('float16')
245
            paddle.tensor.random.gaussian([2, 3])
246

247
        self.assertRaises(TypeError, test_default_fp16)
248

249
        def test_default_fp32():
250
            paddle.framework.set_default_dtype('float32')
251
            out = paddle.tensor.random.gaussian([2, 3])
252 253
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

254
        def test_default_fp64():
255
            paddle.framework.set_default_dtype('float64')
256
            out = paddle.tensor.random.gaussian([2, 3])
257 258
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

259 260
        test_default_fp64()
        test_default_fp32()
261 262 263 264 265 266 267 268

        paddle.enable_static()


class TestStandardNormalDtype(unittest.TestCase):
    def test_default_dtype(self):
        paddle.disable_static()

269
        def test_default_fp16():
270 271 272
            paddle.framework.set_default_dtype('float16')
            paddle.tensor.random.standard_normal([2, 3])

273
        self.assertRaises(TypeError, test_default_fp16)
274

275
        def test_default_fp32():
276 277 278 279
            paddle.framework.set_default_dtype('float32')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

280
        def test_default_fp64():
281 282 283 284
            paddle.framework.set_default_dtype('float64')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

285 286
        test_default_fp64()
        test_default_fp32()
287 288 289

        paddle.enable_static()

290

291 292 293 294 295 296
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

297
        # Different GPU generatte different random value. Only test V100 here.
298 299 300
        if not "V100" in paddle.device.cuda.get_device_name():
            return

301 302 303
        if os.getenv("FLAGS_use_curand", None) in ('0', 'False', None):
            return

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        def _check_random_value(dtype, expect, expect_mean, expect_std):
            x = paddle.randn([32, 3, 1024, 1024], dtype=dtype)
            actual = x.numpy()
            self.assertTrue(np.allclose(actual[2, 1, 512, 1000:1010], expect))
            self.assertTrue(np.mean(actual), expect_mean)
            self.assertTrue(np.std(actual), expect_std)

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(2021)
        expect = [
            -0.79037829, -0.54411126, -0.32266671, 0.35791815, 1.44169267,
            -0.87785644, -1.23909874, -2.18194139, 0.49489656, 0.40703062
        ]
        expect_mean = -0.0000053026194133403266873214888799115129813799285329878330230713
        expect_std = 0.99999191058126390974081232343451119959354400634765625
        _check_random_value(core.VarDesc.VarType.FP64, expect, expect_mean,
                            expect_std)

        expect = [
            -0.7988942, 1.8644791, 0.02782744, 1.3692524, 0.6419724, 0.12436751,
            0.12058455, -1.9984808, 1.5635862, 0.18506318
        ]
        expect_mean = -0.00004762359094456769526004791259765625
        expect_std = 0.999975681304931640625
        _check_random_value(core.VarDesc.VarType.FP32, expect, expect_mean,
                            expect_std)
        paddle.enable_static()


Q
qijun 已提交
335
if __name__ == "__main__":
336
    unittest.main()