conv_op.cc 22.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20
#ifdef PADDLE_WITH_CUDA
21
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
22 23 24 25 26
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
27 28 29 30

namespace paddle {
namespace operators {

C
chengduoZH 已提交
31
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
32
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
33
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
34
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
35
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
36
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
37
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41

C
chengduoZH 已提交
42 43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
48 49 50
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
51 52 53 54 55 56 57 58 59
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
60

Y
Yang Yu 已提交
61
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
62
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
63
                    "channels * groups.");
C
chengduoZH 已提交
64
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
65
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
66 67 68
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
69
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
70 71 72
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
73
  }
74
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
75
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
76 77
}

78 79
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
80 81
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
82
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
83
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
84
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
85 86
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
87
#ifdef PADDLE_WITH_CUDA
88
  if (platform::CanCUDNNBeUsed(ctx)) {
89
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
90 91
  }
#endif
92
#ifdef PADDLE_WITH_MKLDNN
93
  if (library == framework::LibraryType::kPlain &&
94
      platform::CanMKLDNNBeUsed(ctx)) {
95
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
96
    layout = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
97
    customized_type_value = kConvMKLDNNFP32;
98
  }
99
#endif
100

Y
Yu Yang 已提交
101
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
102 103 104 105 106 107
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
108
  if (input_data_type == framework::proto::VarType::FP16) {
109
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
110 111 112
                      "float16 can only be used when CUDNN is used");
  }

113 114 115 116 117 118 119 120 121 122 123 124 125 126
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
127 128
}

Y
Yu Yang 已提交
129
void Conv2DOpMaker::Make() {
130 131 132 133
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
134 135
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
136 137 138 139
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
140
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
141
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
142 143
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
144 145
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
146
           "input image channels divided by the groups.");
147 148 149 150 151
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
152 153 154
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
155
           "Used with fuse_residual_connection fusion.")
156
      .AsDispensable();
Y
Yihua Xu 已提交
157 158 159
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
160 161 162 163
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
164
      .SetDefault({1, 1});
C
chengduoZH 已提交
165 166 167 168
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
169 170 171
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
172
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
173 174 175 176
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
177
      .SetDefault(1);
C
chengduoZH 已提交
178
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
179 180
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
181
                            "convolution operator.")
C
chengduoZH 已提交
182
      .SetDefault({1, 1});
183 184 185 186
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
187 188 189
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
190 191 192
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
193 194
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
195
  AddAttr<bool>("fuse_residual_connection",
196
                "(bool, default false) Only used in mkldnn kernel. Used "
197 198
                "whenever convolution output is as an input to residual "
                "connection.")
199
      .SetDefault(false);
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
236 237
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
238
                "convolution, whether enable exhaustive search "
239 240
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
241
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
242 243
Convolution Operator.

C
chengduoZH 已提交
244
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
245
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
246
parameters is checked in the infer-shape.
C
chengduoZH 已提交
247
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
248
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
249 250 251 252 253 254
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
255 256 257 258
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
259 260
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
261
  Output:
C
chengduoZH 已提交
262 263 264 265 266 267
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
268
)DOC");
Q
qingqing01 已提交
269
  Apply();
C
chengduoZH 已提交
270 271
}

Y
Yu Yang 已提交
272
void Conv3DOpMaker::Make() {
273 274 275 276
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
277 278
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
279
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
280
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
281 282 283
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
284
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
285
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
286 287
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
288 289 290
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
291
           "input image channels divided by the groups.");
292 293 294 295 296
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
297 298 299
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
300 301 302 303
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
304
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
305 306 307 308
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
309 310 311
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
312
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
313 314 315 316
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
317
      .SetDefault(1);
C
chengduoZH 已提交
318
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
319 320
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
321
                            "convolution operator.")
C
chengduoZH 已提交
322
      .SetDefault({1, 1, 1});
323 324 325 326
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
327 328 329
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
330 331 332 333 334 335 336
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
337 338 339 340 341 342 343
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
344 345 346
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
347 348 349 350 351 352 353 354
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
355 356
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
357
                "convolution, whether enable exhaustive search "
358 359
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
360
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
361 362
Convolution3D Operator.

C
chengduoZH 已提交
363
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
364
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
365
parameters is checked in the infer-shape.
C
chengduoZH 已提交
366
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
367
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
368 369 370 371 372 373
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
374 375 376 377
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
378 379
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
380
  Output:
C
chengduoZH 已提交
381 382 383 384 385 386 387
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
388
)DOC");
Q
qingqing01 已提交
389
  Apply();
C
chengduoZH 已提交
390 391
}

C
chengduoZH 已提交
392 393 394 395 396 397 398 399 400 401 402
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

403 404
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
405 406
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
407
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
408 409 410 411
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
412
#ifdef PADDLE_WITH_CUDA
413 414
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
415 416
  }
#endif
417 418 419 420
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
421
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
422
    customized_type_value = kConvMKLDNNFP32;
423
  }
424
#endif
425

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
class Conv2dGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(GradOpType());
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }

  virtual std::string GradOpType() const {
    return this->ForwardOpType() + "_grad";
  }
};

C
chengduoZH 已提交
473 474 475 476
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
477
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
478
                  ops::ConvOpInferVarType, ops::Conv2dGradMaker);
479
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
480 481

// depthwise convolution op
Y
Yang Yang 已提交
482
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
483
                  ops::ConvOpInferVarType, ops::Conv2dGradMaker);
484
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
485

Y
Yang Yang 已提交
486
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
487
                  ops::ConvOpInferVarType,
488 489
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
490

491 492
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
493
REGISTER_OP_CPU_KERNEL(
494
    depthwise_conv2d,
X
xzl 已提交
495 496 497 498
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
499
    depthwise_conv2d_grad,
X
xzl 已提交
500 501
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
502

C
chengduoZH 已提交
503
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
504 505 506 507 508 509
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
510 511

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
512 513 514 515 516 517
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);