math.py 114.4 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26
from paddle.tensor import cast
F
Feiyu Chan 已提交
27
from paddle.tensor.attribute import _complex_to_real_dtype
28
import paddle
29
from ..fluid import layers
30
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
31 32
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
34
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
35 36 37

# TODO: define math functions
# yapf: disable
38 39 40 41
from ..fluid.layers import abs    # noqa: F401
from ..fluid.layers import acos    # noqa: F401
from ..fluid.layers import asin    # noqa: F401
from ..fluid.layers import ceil    # noqa: F401
42
from ..fluid.layers import ceil_    # noqa: F401
43 44 45 46 47
from ..fluid.layers import cos    # noqa: F401
from ..fluid.layers import tan    # noqa: F401
from ..fluid.layers import sinh    # noqa: F401
from ..fluid.layers import cosh    # noqa: F401
from ..fluid.layers import exp    # noqa: F401
48
from ..fluid.layers import exp_    # noqa: F401
R
ronnywang 已提交
49
from ..fluid.layers import expm1    # noqa: F401
50
from ..fluid.layers import floor    # noqa: F401
51
from ..fluid.layers import floor_    # noqa: F401
52 53
from ..fluid.layers import log    # noqa: F401
from ..fluid.layers import reciprocal    # noqa: F401
54
from ..fluid.layers import reciprocal_    # noqa: F401
55
from ..fluid.layers import round    # noqa: F401
56
from ..fluid.layers import round_    # noqa: F401
57
from ..fluid.layers import rsqrt    # noqa: F401
58
from ..fluid.layers import rsqrt_    # noqa: F401
59 60 61 62 63 64
from ..fluid.layers import scale    # noqa: F401
from ..fluid.layers import square    # noqa: F401
from ..fluid.layers import stanh    # noqa: F401
from ..fluid.layers import atan    # noqa: F401
from ..fluid.layers import erf    # noqa: F401
from ..fluid.layers import sqrt    # noqa: F401
65
from ..fluid.layers import sqrt_    # noqa: F401
66
from ..fluid.layers import sin    # noqa: F401
67
from ..fluid.layers import lgamma    # noqa: F401
68 69

from ..fluid.layers import multiplex    # noqa: F401
G
guofei 已提交
70
from ..fluid import layers
W
wanghuancoder 已提交
71
from paddle import _C_ops
72

73 74
__all__ = []

75 76 77 78 79 80 81 82 83 84 85 86 87
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

88 89 90 91 92 93 94 95

@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
    _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
W
wanghuancoder 已提交
96
    return _C_ops.scale_(x, 'scale',
97 98 99 100
                            float(_scale), 'bias',
                            float(bias), 'bias_after_scale', bias_after_scale)


101
def pow(x, y, name=None):
102
    """
103
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
104

105 106
    .. math::
        out = x^{y} 
107

108 109
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
110 111


112 113
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
114
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
115 116
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
117
    Returns:
118
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
119 120 121

    Examples:

122
        ..  code-block:: python
123 124 125

            import paddle

126 127 128 129 130 131 132 133 134 135 136 137
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

138
            # example 2: y is a Tensor
139
            y = paddle.to_tensor([2], dtype='float32')
140
            res = paddle.pow(x, y)
141 142 143
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
144 145

    """
146
    # in dynamic graph mode
W
WuHaobo 已提交
147
    if in_dygraph_mode():
148
        if isinstance(y, (int, float)):
W
wanghuancoder 已提交
149
            return _C_ops.pow(x, 'factor', y)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
168
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
169 170 171
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
172 173 174



175 176 177 178 179 180 181
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
W
wanghuancoder 已提交
182
    op = getattr(_C_ops, op_name)
183 184 185 186 187 188 189 190 191 192 193 194
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

195 196
    out = helper.kwargs.get('out', None)

197 198 199
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
200
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
201 202
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
203
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
204 205 206 207 208
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
209 210 211 212 213 214

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
215 216 217 218 219 220 221 222 223 224 225

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
226
def add(x, y, name=None):
227
    """
228
    Examples:
229 230 231 232

    ..  code-block:: python

        import paddle
233 234
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
235
        z = paddle.add(x, y)
236
        print(z)  # [3., 8., 6. ]
237 238

    """
239

240
    if in_dygraph_mode():
W
wanghuancoder 已提交
241
        return _C_ops.elementwise_add(x, y)
242

243
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))
244 245


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


264 265
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
266
    Substract two tensors element-wise. The equation is:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


343
def divide(x, y, name=None):
344
    """
345
    Divide two tensors element-wise. The equation is:
346

347 348
    .. math::
        out = x / y
349

350 351
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
352

353 354 355 356
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
357

358
    Returns:
359
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
360

361
    Examples:
362

363
        ..  code-block:: python
364

365
            import paddle
366

367 368
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
369
            z = paddle.divide(x, y)
370
            print(z)  # [2., 0.6, 2.]
371

372 373 374 375 376 377 378
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
379

380
    return _elementwise_op(LayerHelper(op_type, **locals()))
381 382


383 384 385
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
386

387 388
    .. math::
        out = x // y
389

390 391
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
392

393 394 395 396
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
397

398 399
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
400

401
    Examples:
402

403
        ..  code-block:: python
404

405
            import paddle
406

407 408
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
409
            z = paddle.floor_divide(x, y)
410
            print(z)  # [2, 0, 2, 2]
411

412 413 414 415 416 417
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
418

419
    return _elementwise_op(LayerHelper(op_type, **locals()))
420 421


422
def remainder(x, y, name=None):
423
    r"""
424 425 426
    Mod two tensors element-wise. The equation is:

    .. math::
427

428 429 430
        out = x \% y

    **Note**:
431
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
432 433

    Args:
W
WangXi 已提交
434 435
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
436 437 438
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
439
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
440 441 442 443 444 445 446

    Examples:

        ..  code-block:: python

            import paddle

447 448
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
449
            z = paddle.remainder(x, y)
W
WangXi 已提交
450
            print(z)  # [0, 3, 2, 1]
451 452 453

    """
    op_type = 'elementwise_mod'
454 455 456
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
457
            x, y, axis=axis, op_name=op_type)
458 459 460 461

    return _elementwise_op(LayerHelper(op_type, **locals()))


462 463
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
464 465


466
def multiply(x, y, name=None):
467
    """
468
    multiply two tensors element-wise. The equation is:
469

470 471
    .. math::
        out = x * y
472

473 474
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
475

476
    Args:
W
will-jl944 已提交
477 478
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
479
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
480

481
    Returns:
482
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
483

484 485 486 487 488 489
    Examples:

        ..  code-block:: python

            import paddle

490 491
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
492
            res = paddle.multiply(x, y)
493
            print(res) # [[5, 12], [21, 32]]
494

495
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
496 497 498
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
499 500 501 502

    """
    op_type = 'elementwise_mul'
    act = None
503
    axis = -1
504

505 506 507 508
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

509 510 511 512 513
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

514 515
    return _elementwise_op(LayerHelper(op_type, **locals()))

516
def maximum(x, y, name=None):
517
    """
W
Wei Shengyu 已提交
518
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
519

520 521
    .. math::
        out = max(x, y)
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
566 567
    """
    op_type = 'elementwise_max'
568
    axis = -1
569 570 571 572 573 574
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

575
def minimum(x, y, name=None):
576
    """
W
Wei Shengyu 已提交
577
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
578

579 580
    .. math::
        out = min(x, y)
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
625 626
    """
    op_type = 'elementwise_min'
627
    axis = -1
628 629 630 631 632
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
633

634 635
for func in [
        add,
636
        multiply
637
]:
638
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
639 640
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
641 642 643 644 645 646 647
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
648 649
        op_proto,
        additional_args_lines=additional_args_lines,
650
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
651
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
652
        }) + """\n""" + str(func.__doc__)
653

Y
Yang Zhang 已提交
654

655
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
656 657 658 659
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
660
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
661 662
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
663
            Tensor with a single element, otherwise must be in the
664 665 666 667 668 669 670
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
671
            value is False.
672
        name (str, optional): The default value is None. Normally there is no need for
673 674 675
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
676
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
677 678
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
679 680

    Raises:
681
        TypeError: The type of :attr:`axis` must be int, list or tuple.
682

683 684 685 686
    Examples:
        .. code-block:: python

            import paddle
687

688
            # x is a Tensor with following elements:
689 690 691
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
692 693
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
694
            out1 = paddle.sum(x)  # [3.5]
695 696 697
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
698

699
            # y is a Tensor with shape [2, 2, 2] and elements as below:
700 701 702
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
703 704
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
705 706
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
707 708 709 710 711 712 713 714 715 716
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
717
    """
718 719 720 721 722 723 724 725 726 727 728
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

729 730 731 732 733 734 735 736 737
    def get_dtype(x, dtype):
        if dtype is not None:
            return (True, dtype)
        src_type = convert_dtype(x.dtype)
        if src_type in ['bool','int32', 'int64']:
            return (True, 'int64')
        return (False, src_type)

    dtype_flag, dtype = get_dtype(x, dtype)
738
    if in_dygraph_mode():
739
        axis = axis if axis != None and axis != [] else [0]
740
        if dtype_flag:
W
wanghuancoder 已提交
741
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
742 743
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
744 745
                                       convert_np_dtype_to_dtype_(dtype))
        else:
W
wanghuancoder 已提交
746
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
747
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
748 749 750 751 752 753 754

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

755 756 757 758 759
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
            'out_dtype': convert_np_dtype_to_dtype_(dtype)
        })
W
wanghuancoder 已提交
760

761
    check_variable_and_dtype(
762 763 764 765
        x, 'x', ['bool', 'float16', 'float32', 'float64',
                'int32', 'int64', 'complex64', 'complex128',
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
766

767 768
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

769 770 771 772 773
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
774
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
775 776
    helper.append_op(
        type='reduce_sum',
777
        inputs={'X': x},
778 779 780
        outputs={'Out': out},
        attrs=attrs)
    return out
781

782

783
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
784
def add_n(inputs, name=None):
785
    """
S
Steffy-zxf 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
821 822

    Args:
823
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
824
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
825 826 827 828
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
829
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
830 831 832 833 834 835

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
836 837 838 839 840
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
841
    """
S
Steffy-zxf 已提交
842 843 844
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
845
        return _C_ops.sum(inputs, 'use_mkldnn', False)
846

S
Steffy-zxf 已提交
847 848
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
849 850 851 852
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
853
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
854 855
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
856
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
857 858


859 860 861 862 863 864 865 866 867 868 869
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
    if in_dygraph_mode():
W
wanghuancoder 已提交
899
        return _C_ops.trunc(input)
900 901 902 903 904 905 906 907 908 909 910 911 912 913
    else:
        inputs = {"X": input}
        attrs = {}

        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
        return out



W
WuHaobo 已提交
914
def mm(input, mat2, name=None):
915
    """
S
swtkiwi 已提交
916

917 918 919 920 921 922 923 924 925 926 927
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
928
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
929
        mat2 (Tensor): The input tensor which is a Tensor.
930 931 932 933
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
934
        Tensor: The product Tensor.
935 936 937 938 939

    Examples:
        .. code-block:: python

            import paddle
940 941 942 943 944 945 946 947
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
948

949 950
    """
    if in_dygraph_mode():
951
        return _C_ops.matmul_v2(input, mat2)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
989
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
990
    helper.append_op(
991
        type='matmul_v2', inputs={'X': input,
992 993
                               'Y': mat2}, outputs={'Out': out})
    return out
994

995

Y
yaoxuefeng 已提交
996
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1010 1011 1012
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1013
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1014
        alpha (float): Coefficient of $x*y$.
1015 1016 1017
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
1018
        Tensor: The output Tensor of addmm op.
1019 1020 1021

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1022
            
1023 1024
            import paddle

Y
yaoxuefeng 已提交
1025 1026 1027
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1028

Y
yaoxuefeng 已提交
1029
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1030

N
Noel 已提交
1031
            print(out)
1032 1033 1034
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1055
    if in_dygraph_mode():
W
wanghuancoder 已提交
1056
        out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
1057 1058
        return out

1059 1060 1061 1062
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1063
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1064 1065 1066 1067 1068 1069 1070
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1071 1072


1073
def logsumexp(x, axis=None, keepdim=False, name=None):
1074
    r"""
1075
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1076

1077
    .. math::
1078
       logsumexp(x) = \\log\\sum exp(x)
1079

1080
    Args:
S
Shang Zhizhou 已提交
1081 1082
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1099

1100
    Returns:
1101 1102
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1103

1104
    Examples:
1105

1106
    .. code-block:: python
1107

1108 1109
        import paddle

1110
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1111 1112
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1113 1114

    """
1115 1116 1117 1118 1119 1120 1121
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1122

1123
    if in_dygraph_mode():
W
wanghuancoder 已提交
1124
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1125

1126 1127 1128
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1129

1130
    helper = LayerHelper('logsumexp', **locals())
1131
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1132 1133 1134 1135
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1136

S
swtkiwi 已提交
1137

1138 1139
def inverse(x, name=None):
    """
1140 1141 1142 1143 1144
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1145
        x (Tensor): The input tensor. The last two
1146 1147 1148 1149 1150 1151 1152 1153
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1154
        Tensor: A Tensor holds the inverse of x. The shape and data type
1155
                        is the same as x.
1156 1157 1158 1159 1160

    Examples:
        .. code-block:: python

            import paddle
1161 1162

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1163 1164
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1165 1166 1167

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1168
        return _C_ops.inverse(x)
1169

1170 1171
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1172
                                 ['float32', 'float64'], 'inverse')
1173
        if len(x.shape) < 2:
1174 1175 1176
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1177 1178
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1179
    helper = LayerHelper('inverse', **locals())
1180
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1181
    helper.append_op(
1182
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1183 1184 1185
    return out


1186
def max(x, axis=None, keepdim=False, name=None):
1187
    """
S
swtkiwi 已提交
1188

1189
    Computes the maximum of tensor elements over the given axis.
1190 1191

    Args:
1192
        x(Tensor): A tensor, the data type is float32,
1193
            float64, int32, int64.
1194
        axis(int|list|tuple, optional): The axis along which the maximum is computed.
1195
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1196
            `x` and return a Tensor with a single element,
1197 1198 1199
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1200
            output Tensor. The result tensor will have one fewer dimension
1201
            than the `x` unless :attr:`keepdim` is true, default
1202
            value is False.
1203
        name(str, optional): The default value is None.  Normally there is no need for
1204 1205 1206
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1207
        Tensor, results of maximum on the specified axis of input tensor,
1208
        it's data type is the same as `x`.
1209 1210 1211

    Examples:
        .. code-block:: python
1212

1213
            import paddle
1214

N
Noel 已提交
1215
            # data_x is a Tensor with shape [2, 4]
1216
            # the axis is a int element
1217 1218 1219

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1220
            result1 = paddle.max(x)
N
Noel 已提交
1221
            print(result1)
1222 1223
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1224
            print(result2)
1225 1226
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1227
            print(result3)
1228 1229
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1230
            print(result4)
1231 1232 1233
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1234
            # data_y is a Tensor with shape [2, 2, 2]
1235
            # the axis is list 
1236 1237 1238

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1239
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1240
            print(result5)
1241 1242
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1243
            print(result6)
1244
            #[7. 8.]
1245 1246
    """

1247
    if axis is not None and not isinstance(axis, list):
1248 1249 1250 1251 1252 1253 1254 1255
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1256 1257 1258
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
W
wanghuancoder 已提交
1259
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
1260
                                   'reduce_all', reduce_all)
1261

1262
    helper = LayerHelper('max', **locals())
1263
    check_variable_and_dtype(
1264
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1265

1266
    out = helper.create_variable_for_type_inference(
1267
            dtype=x.dtype)
1268 1269
    helper.append_op(
        type='reduce_max',
1270
        inputs={'X': x},
1271 1272
        outputs={'Out': out},
        attrs={
1273 1274
            'dim': axis,
            'keep_dim': keepdim,
1275 1276 1277 1278
            'reduce_all': reduce_all
        })
    return out

1279
def min(x, axis=None, keepdim=False, name=None):
1280
    """
S
swtkiwi 已提交
1281

1282
    Computes the minimum of tensor elements over the given axis
1283

1284
    Args:
1285
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
1286
        axis(int|list|tuple, optional): The axis along which the minimum is computed.
1287
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1288
            `x` and return a Tensor with a single element,
1289 1290 1291
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1292
            output Tensor. The result tensor will have one fewer dimension
1293
            than the `x` unless :attr:`keepdim` is true, default
1294
            value is False.
W
WuHaobo 已提交
1295
        name(str, optional): The default value is None.  Normally there is no need for 
1296
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1297

1298
    Returns:
1299
        Tensor, results of minimum on the specified axis of input tensor,
1300
        it's data type is the same as input's Tensor.
1301

1302 1303 1304
    Examples:
        .. code-block:: python

1305
            import paddle
1306

1307
            # x is a tensor with shape [2, 4]
1308
            # the axis is a int element
1309 1310
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1311
            result1 = paddle.min(x)
N
Noel 已提交
1312
            print(result1)
1313 1314
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1315
            print(result2)
1316 1317
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1318
            print(result3)
1319 1320
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1321
            print(result4)
1322 1323 1324
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1325
            # y is a Tensor with shape [2, 2, 2]
1326
            # the axis is list 
1327 1328
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1329
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1330
            print(result5)
1331 1332
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1333
            print(result6)
1334 1335
            #[1. 2.]
    """
1336

1337
    if axis is not None and not isinstance(axis, list):
1338 1339 1340 1341 1342 1343 1344
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1345 1346
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1347
    if in_dygraph_mode():
W
wanghuancoder 已提交
1348
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1349
                                   'reduce_all', reduce_all)
1350 1351 1352 1353 1354 1355

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1356
            dtype=x.dtype)
1357 1358
    helper.append_op(
        type='reduce_min',
1359
        inputs={'X': x},
1360 1361
        outputs={'Out': out},
        attrs={
1362 1363
            'dim': axis,
            'keep_dim': keepdim,
1364 1365 1366 1367 1368
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1369
def log1p(x, name=None):
1370
    r"""
1371
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1372

1373 1374
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1375

1376
    Args:
S
Steffy-zxf 已提交
1377
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1378 1379 1380
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1381
        Tensor, the natural log of the input Tensor computed element-wise.
1382

1383 1384
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1385

1386
            import paddle
S
Steffy-zxf 已提交
1387 1388 1389 1390

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1391 1392 1393
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1394
        return _C_ops.log1p(x)
1395 1396 1397 1398 1399

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1400
    out = helper.create_variable_for_type_inference(dtype)
1401 1402
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1403

J
joejiong 已提交
1404
def log2(x, name=None):
1405
    r"""
J
joejiong 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1443
        return _C_ops.log2(x)
J
joejiong 已提交
1444 1445 1446 1447 1448 1449 1450 1451

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1452

J
joejiong 已提交
1453 1454

def log10(x, name=None):
1455
    r"""
J
joejiong 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1493
        return _C_ops.log10(x)
J
joejiong 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1504
def clip(x, min=None, max=None, name=None):
1505
    """
Y
Yang Zhang 已提交
1506
    This operator clip all elements in input into the range [ min, max ] and return
1507 1508 1509 1510
    a resulting tensor as the following equation:

    .. math::

1511
        Out = MIN(MAX(x, min), max)
1512 1513

    Args:
1514 1515
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1516
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1517
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1518 1519 1520 1521 1522 1523
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1524
        Tensor: A Tensor with the same data type and data shape as input.
1525 1526 1527 1528 1529

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1530

1531
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1532 1533
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1534
            print(out1)
Y
Yang Zhang 已提交
1535 1536
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1537
            print(out2)
Y
Yang Zhang 已提交
1538 1539
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1540 1541
    """

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1552

W
WuHaobo 已提交
1553
    if in_dygraph_mode():
1554 1555 1556 1557
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1558 1559
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
1560
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1561

1562
    if min is not None:
Y
Yang Zhang 已提交
1563
        check_type(min, 'min', (float, int, Variable), 'clip')
1564 1565
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1566
                        'clip', '(When the type of min in clip is Variable.)')
1567
    if max is not None:
Y
Yang Zhang 已提交
1568
        check_type(max, 'max', (float, int, Variable), 'clip')
1569 1570
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1571
                        'clip', '(When the type of max in clip is Variable.)')
1572

1573
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1574 1575

    inputs = {'X': x}
1576
    attrs = {'min': min_, 'max': max_}
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1590
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1591
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1592
        dtype=helper.input_dtype('x'))
1593 1594 1595 1596
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1597

W
WuHaobo 已提交
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
W
wanghuancoder 已提交
1613
    return _C_ops.clip_(x, "min", min, "max", max)
1614 1615 1616



1617
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1618
    """
1619
    **trace**
S
swtkiwi 已提交
1620

1621
    This OP computes the sum along diagonals of the input tensor x.
1622 1623

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1624

1625
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1626
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1627
    of the input tensor x.
L
Li Fuchen 已提交
1628

1629
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1630 1631 1632 1633

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1634
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1635

L
Li Fuchen 已提交
1636
    Args:
1637
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1638 1639 1640
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1641 1642 1643
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1644
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1645 1646 1647 1648 1649

    Examples:
        .. code-block:: python

            import paddle
1650

1651 1652 1653
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1654 1655 1656
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1657 1658
    """
    def __check_input(input, offset, dim1, dim2):
1659
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1660 1661 1662
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1663
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1664
        assert len(input_shape) >= 2,                     \
1665 1666
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1667 1668
                len(input_shape)

1669 1670
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1671

X
XiangGao 已提交
1672
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
1673 1674
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1675

X
XiangGao 已提交
1676
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
1677 1678
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1679 1680


1681 1682 1683
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1684

W
wanghuancoder 已提交
1685
    __check_input(input, offset, axis1, axis2)
X
XiangGao 已提交
1686 1687 1688 1689 1690
    if in_dygraph_mode():
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1691 1692
    helper = LayerHelper('trace', **locals())

1693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1694 1695 1696

    helper.append_op(
        type='trace',
1697
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1698
        attrs={'offset': offset,
1699 1700
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1701 1702 1703
        outputs={'Out': [out]})
    return out

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
W
wanghuancoder 已提交
1769
    if in_dygraph_mode():
W
wanghuancoder 已提交
1770
        return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
1812
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1813
def kron(x, y, name=None):
S
swtkiwi 已提交
1814 1815 1816
    """

${comment}
F
Feiyu Chan 已提交
1817 1818

    Args:
N
Noel 已提交
1819
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1820
            float64, int32 or int64.
N
Noel 已提交
1821
        y (Tensor): the second operand of kron op, data type: float16,
1822
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1823
            with x.
1824 1825
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1826 1827 1828
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1829
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1830 1831 1832

    Examples:
        .. code-block:: python
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1845 1846
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1847
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
1848 1849 1850 1851 1852

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1853
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1854 1855
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1856 1857 1858 1859


def cumsum(x, axis=None, dtype=None, name=None):
    """
1860 1861 1862 1863
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1864 1865

    Args:
1866
        x (Tensor): The input tensor needed to be cumsumed.
1867 1868 1869 1870 1871
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1872
        Tensor, the result of cumsum operator. 
1873 1874 1875 1876 1877

    Examples:
        .. code-block:: python
            
            import paddle
1878 1879 1880
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
W
wanghuancoder 已提交
1908
            return _C_ops.cumsum(x, 'flatten', flatten)
1909
        else:
W
wanghuancoder 已提交
1910
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
1911 1912 1913 1914 1915 1916 1917 1918 1919

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1920

H
hlygit66666 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

    **Note**:
    The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
1932
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        return _C_ops.cumprod(x, 'dim', dim)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1998

1999
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2000
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
2001
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
2002 2003
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2004
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
2027
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2028
            out = paddle.tensor.isinf(x)
N
Noel 已提交
2029
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
2030 2031
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2032
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
2055
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2056
            out = paddle.tensor.isnan(x)
N
Noel 已提交
2057
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
2058 2059
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2060
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
2061 2062 2063 2064 2065 2066 2067
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
2068 2069 2070 2071 2072
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
2073
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
2083
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
2093
    
G
guofei 已提交
2094 2095 2096 2097 2098 2099
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
2100 2101
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
2118 2119
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

2152
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
2153 2154 2155 2156
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2157
        return _C_ops.sign(x)
W
WangXi 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
2169
    r"""
W
WangXi 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

2188
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2189
            out = paddle.tanh(x)
N
Noel 已提交
2190
            print(out)
W
WangXi 已提交
2191 2192 2193
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2194
        return _C_ops.tanh(x)
W
WangXi 已提交
2195 2196

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2197
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2198 2199 2200 2201
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2202

2203
@inplace_apis_in_dygraph_only
2204 2205 2206 2207 2208
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
W
wanghuancoder 已提交
2209
    return _C_ops.tanh_(x)
2210 2211


S
Steffy-zxf 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2236
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2257
            Tensor with a single element, otherwise must be in the
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2280
            # x is a bool Tensor with following elements:
2281 2282
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2283
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2284
            print(x)
S
syyxsxx 已提交
2285
            x = paddle.cast(x, 'bool')
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2300 2301
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2316 2317
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2318
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2319 2320
                                       'reduce_all', reduce_all_flag)

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2349
            Tensor with a single element, otherwise must be in the
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2372
            # x is a bool Tensor with following elements:
2373 2374
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2375
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2376
            print(x)
S
syyxsxx 已提交
2377
            x = paddle.cast(x, 'bool')
2378 2379 2380 2381 2382
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
2383 2384
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
2385 2386
            print(out2)
            
2387 2388
            # keep_dim=False, out3 should be [True, True], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, True]
2389 2390
            print(out3)
            
2391
            # keep_dim=True, result should be [[True], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2392
            out4 = paddle.any(x, axis=1, keepdim=True)
2393
            out4 = paddle.cast(out4, 'int32')  # [[True], [True]]
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2408 2409
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2410
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2411 2412
                                       'reduce_all', reduce_all_flag)

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2490
        return _C_ops.conj(x)
2491 2492 2493 2494 2495 2496 2497 2498 2499

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
2500

Z
zyfncg 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
2529
        return _C_ops.digamma(x)
Z
zyfncg 已提交
2530 2531 2532 2533 2534 2535 2536

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

    return layers.scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
2560

2561
def atan2(x, y, name=None):
R
ronnywang 已提交
2562
    r"""
2563
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
2564 2565 2566 2567

    Equation:
        .. math::

2568 2569 2570 2571 2572 2573 2574 2575
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
2576 2577

    Args:
2578 2579
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
2580 2581 2582 2583 2584 2585 2586 2587
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

2588
            import paddle
R
ronnywang 已提交
2589

2590 2591 2592
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
2593

2594 2595 2596
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
2597

2598 2599 2600
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
2601 2602 2603 2604

    """

    if in_dygraph_mode():
2605
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
2606 2607
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
2608
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
2609 2610

        helper = LayerHelper('atan2', **locals())
2611
        inputs = {'X1' : x, 'X2' : y}
R
ronnywang 已提交
2612 2613 2614 2615
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
                type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
2627 2628 2629
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
            out = paddle.lerp(start, end, 0.5)
            # out: [5.5., 6., 6.5, 7.]

    """
    if in_dygraph_mode():
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
        return _C_ops.lerp(x, y, weight)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
    return _C_ops.lerp_(x, y, weight)

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
def rad2deg(x, name=None):
    """
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', rad2deg_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
    """
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', deg2rad_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
2790

T
Tao Luo 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

    Args:
        x, y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
            If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

            x3 = paddle.to_tensor(np.arange(6))
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

    if in_dygraph_mode():
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

    Args:
        x, y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
            If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

            x3 = paddle.to_tensor(np.arange(6))
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
        x(Tensor): The input tensor to compute the forward difference on
        n(int, optional): The number of times to recursively compute the difference. 
                          Only support n=1. Default:1
        axis(int, optional): The axis to compute the difference along. Default:-1
        prepend(Tensor, optional): The tensor to prepend to input along axis before computing the difference.
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        append(Tensor, optional): The tensor to append to input along axis before computing the difference, 
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        name(str|None): A name for this layer(optional). If set None, 
                        the layer will be named automatically.
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
2957

A
andyjpaddle 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
    if in_dygraph_mode():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _C_ops.concat(input_list, 'axis', axis)
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
        input_front = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
        input_back = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_2)

        if x.dtype == paddle.bool:
            op = getattr(_C_ops, "logical_xor")
            out = op(input_back, input_front)
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)
        return out
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)

        return out
F
Feiyu Chan 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137


def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): y (Tensor): An N-D Tensor of real data type with the same precision as that of x's data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

    if in_dygraph_mode():
        return _C_ops.angle(x)

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out