activation_op.cc 24.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

C
Charles-hit 已提交
23
#include "paddle/fluid/framework/infershape_utils.h"
24
#include "paddle/fluid/framework/op_version_registry.h"
25
#include "paddle/fluid/operators/common_infer_shape_functions.h"
26
#include "paddle/phi/backends/dynload/port.h"
C
Charles-hit 已提交
27
#include "paddle/phi/infermeta/backward.h"
Q
qijun 已提交
28

A
Adam 已提交
29 30
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
31 32 33
namespace paddle {
namespace operators {

34 35
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
36 37
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
38 39
}

40 41 42 43 44 45 46 47 48 49 50 51 52 53
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)           \
  class OP_NAME##OpMaker                                            \
      : public ::paddle::framework::OpProtoAndCheckerMaker {        \
   public:                                                          \
    void Make() override {                                          \
      AddInput("X",                                                 \
               "Input of " #OP_NAME                                 \
               " operator, an N-D Tensor, with data type float32, " \
               "float64 or float16.");                              \
      AddOutput("Out",                                              \
                "Output of " #OP_NAME                               \
                " operator, a Tensor with shape same as input.");   \
      AddComment(OP_COMMENT);                                       \
    }                                                               \
D
dzhwinter 已提交
54
  }
D
dzhwinter 已提交
55

H
hong 已提交
56 57
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
58
 public:
H
hong 已提交
59
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
60 61

 protected:
62
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
63 64 65 66
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
67

A
Adam 已提交
68 69
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
70 71
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
R
Ruibiao Chen 已提交
72
         PADDLE_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
73
      op->SetInput("X", this->Input("X"));  // x
74 75 76 77
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
78
      op->SetInput("Out", this->Output("Out"));  // out
79
    }
D
dzhwinter 已提交
80
  }
81
};
D
dzhwinter 已提交
82

83 84 85
phi::KernelKey GetKernelType(const framework::ExecutionContext& ctx,
                             const framework::OperatorWithKernel& oper,
                             const std::string& name) {
86
  auto data_type = oper.IndicateVarDataType(ctx, name);
87 88 89 90 91 92 93 94 95 96
  // FIXME(liuwei1031) temporarily disable the code to unblock users
  // TODO(liuwei1031) figure out the reason behind
  // https://github.com/PaddlePaddle/Paddle/issues/16096
  // and re-enable this in the future
  // #ifdef PADDLE_WITH_CUDA
  //   auto it1 = oper.Attrs().find("use_cudnn");
  //   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
  //     library = framework::LibraryType::kCUDNN;
  //   }
  // #endif
97
  return phi::KernelKey(data_type, ctx.GetPlace());
98 99
}

Q
qijun 已提交
100 101 102 103
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

104
  void InferShape(framework::InferShapeContext* ctx) const override {
105
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
106
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
107
  }
108

109
 protected:
110
  phi::KernelKey GetExpectedKernelType(
111 112 113
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
114 115
};

C
chengduo 已提交
116 117 118
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
119
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
120
      const override {
121 122
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
123 124 125
  }
};

Q
qijun 已提交
126 127 128 129
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

130
  void InferShape(framework::InferShapeContext* ctx) const override {
131 132 133
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
134
  }
135

136
 protected:
137
  phi::KernelKey GetExpectedKernelType(
138
      const framework::ExecutionContext& ctx) const override {
139
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
140
  }
Q
qijun 已提交
141 142
};

143 144
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
145
  void Make() override {
146 147 148 149 150 151
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
152 153 154 155
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
156
    AddComment(R"DOC(
K
kexinzhao 已提交
157
BRelu Activation Operator.
K
Kexin Zhao 已提交
158

159
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
160 161

)DOC");
162 163 164 165 166
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
167
  void Make() override {
168
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
169
    AddOutput("Out", "Output of SoftRelu operator");
170 171
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
172
    AddComment(R"DOC(
K
kexinzhao 已提交
173
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
174

175
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
176 177

)DOC");
178 179 180
  }
};

181 182
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
183
  void Make() override {
Z
zhupengyang 已提交
184 185 186 187 188 189 190 191
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
192
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
193
    AddComment(R"DOC(
K
kexinzhao 已提交
194
Relu6 Activation Operator.
K
Kexin Zhao 已提交
195

196
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
197 198

)DOC");
199 200 201
  }
};

202 203
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
204
  void Make() override {
205
    AddInput("X", "Input of Pow operator");
206 207 208 209 210
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
211
    AddOutput("Out", "Output of Pow operator");
212
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
213
    AddComment(R"DOC(
K
kexinzhao 已提交
214
Pow Activation Operator.
K
Kexin Zhao 已提交
215

216
$$out = x^{factor}$$
K
Kexin Zhao 已提交
217 218

)DOC");
219 220 221 222 223
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
224
  void Make() override {
225 226
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
227
             " A Tensor with type float32, float64.");
228 229 230
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
231 232
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
233
    AddComment(R"DOC(
K
kexinzhao 已提交
234
STanh Activation Operator.
K
Kexin Zhao 已提交
235

Y
Yan Chunwei 已提交
236
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
237 238

)DOC");
Q
qijun 已提交
239 240 241
  }
};

A
Abhinav Arora 已提交
242 243
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
244
  void Make() override {
A
Abhinav Arora 已提交
245
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
246
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
247 248 249 250
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

251
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
252 253 254 255 256

)DOC");
  }
};

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

299
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
300 301 302 303 304 305 306 307 308

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

309
template <ActBwdOpFwdDeps kDepValue>
310 311 312 313 314
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
315 316
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
317
      if (ctx->HasOutput("DX")) {
318 319 320
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
321
      if (ctx->HasOutput("DDOut")) {
322 323 324
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
325
    }
326 327
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
328
      if (ctx->HasOutput("DOut")) {
329 330 331
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
332 333 334 335
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
336 337 338 339
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
340 341 342 343
    }
  }

 protected:
344
  phi::KernelKey GetExpectedKernelType(
345 346 347 348 349 350 351 352 353 354 355
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
356 357
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
358 359 360 361 362
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
363 364
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
365
      if (ctx->HasOutput("DDOut")) {
366 367 368
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
369 370 371 372
    }
  }

 protected:
373
  phi::KernelKey GetExpectedKernelType(
374 375 376 377 378
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

379 380 381 382 383 384
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
385 386
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
387 388 389 390 391 392 393 394 395
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
396 397
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
414
  phi::KernelKey GetExpectedKernelType(
415 416 417 418 419
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

420
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
421 422
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
423
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
424
                           {"DDX", "DDOut"});
425 426
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
427

H
hong 已提交
428 429
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
430
 public:
H
hong 已提交
431
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
432 433

 protected:
434
  void Apply(GradOpPtr<T> op) const override {
435
    op->SetType("pow_grad");
H
hong 已提交
436 437
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
C
Charles-hit 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    op->SetOutput(framework ::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
  }
};
template <typename T>
class PowDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("pow_double_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework ::GradVarName("X")));
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
H
hong 已提交
456 457
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
458 459
  }
};
C
Charles-hit 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
template <typename T>
class PowTripleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("pow_triple_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    op->SetOutput("D_X", this->InputGrad("X"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDX", this->InputGrad("DDX"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
  }
};
480 481 482 483 484 485 486 487 488 489
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
490
  phi::KernelKey GetExpectedKernelType(
491 492 493 494
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

495
  phi::KernelKey GetKernelTypeForVar(
496
      const std::string& var_name,
497
      const phi::DenseTensor& tensor,
498
      const phi::KernelKey& expected_kernel_type) const override {
499
    if (var_name == "FactorTensor") {
500 501 502
      return phi::KernelKey(phi::Backend::ALL_BACKEND,
                            expected_kernel_type.layout(),
                            expected_kernel_type.dtype());
503
    }
504 505
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
506 507 508 509 510 511 512 513 514 515 516 517 518 519
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
520
  phi::KernelKey GetExpectedKernelType(
521 522 523 524
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

525
  phi::KernelKey GetKernelTypeForVar(
526
      const std::string& var_name,
527
      const phi::DenseTensor& tensor,
528
      const phi::KernelKey& expected_kernel_type) const override {
529
    if (var_name == "FactorTensor") {
530 531 532
      return phi::KernelKey(phi::Backend::ALL_BACKEND,
                            expected_kernel_type.layout(),
                            expected_kernel_type.dtype());
533
    }
534 535
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
536 537
  }
};
C
Charles-hit 已提交
538 539 540 541 542 543

class PowOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
544
  phi::KernelKey GetExpectedKernelType(
C
Charles-hit 已提交
545 546 547 548 549
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
};

C
Charles-hit 已提交
550 551 552 553 554
class PowOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
555
  phi::KernelKey GetExpectedKernelType(
C
Charles-hit 已提交
556 557 558 559
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
};
560
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
561 562 563 564
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
565
namespace plat = paddle::platform;
566

567 568
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
569 570 571
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
572
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
573 574 575 576
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
577
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
578 579 580 581
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
582
                    ops::ActivationGradOpInplaceInferer);
583

L
Leo Chen 已提交
584 585 586 587 588 589 590 591 592 593
#define REGISTER_ACTIVATION_CPU_KERNEL(                                     \
    act_type, op_name, functor, grad_functor)                               \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type,                                                             \
      ops::ActivationKernel<phi::CPUContext, ops::functor<float>>,          \
      ops::ActivationKernel<phi::CPUContext, ops::functor<double>>);        \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type##_grad,                                                      \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<float>>, \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<double>>);
594

595 596
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
597

598
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
599
REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor);
600 601
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor);
602 603 604
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
605 606
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
607

608
/* ==========================   pow register  ============================ */
C
Charles-hit 已提交
609 610 611
DECLARE_INFER_SHAPE_FUNCTOR(pow_double_grad,
                            PowDoubleGradInferShapeFunctor,
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
C
Charles-hit 已提交
612 613 614
DECLARE_INFER_SHAPE_FUNCTOR(pow_triple_grad,
                            PowTripleGradInferShapeFunctor,
                            PD_INFER_META(phi::GeneralTernaryGradInferMeta));
615 616

REGISTER_OPERATOR(
617 618 619 620
    pow,
    ops::PowOp,
    ops::PowOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
621 622
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
623
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
624 625 626 627
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(pow_grad,
                  ops::PowOpGrad,
C
Charles-hit 已提交
628 629 630 631 632 633
                  ops::ActivationGradOpInplaceInferer,
                  ops::PowDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::PowDoubleGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(pow_double_grad,
                  ops::PowOpDoubleGrad,
                  ops::ActivationDoubleGradOpInplaceInferer,
C
Charles-hit 已提交
634 635
                  ops::PowTripleGradOpMaker<paddle::framework::OpDesc>,
                  ops::PowTripleGradOpMaker<paddle::imperative::OpBase>,
C
Charles-hit 已提交
636
                  PowDoubleGradInferShapeFunctor);
C
Charles-hit 已提交
637 638 639
REGISTER_OPERATOR(pow_triple_grad,
                  ops::PowOpTripleGrad,
                  PowTripleGradInferShapeFunctor);
640 641
/* ========================================================================== */

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

661 662
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
663 664
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
665 666 667 668 669 670 671
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
672 673
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
674
        false));
675

676
/* ========================================================================== */