test_hsigmoid_op.py 25.1 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
Y
Yancey1989 已提交
16
import unittest
17

Y
Yancey1989 已提交
18
import numpy as np
19 20
from op_test import OpTest, skip_check_grad_ci

L
Leo Chen 已提交
21
import paddle
J
JiabinYang 已提交
22
import paddle.fluid as fluid
23
import paddle.fluid.initializer as I
24
import paddle.nn.functional as F
Y
Yancey1989 已提交
25

26
paddle.enable_static()
D
dzhwinter 已提交
27 28
np.random.seed(100)

Y
Yancey1989 已提交
29 30 31 32 33

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


34
class CodeTable:
Y
Yancey1989 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


48
class CodeTableWithCustomTree:
49 50 51
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
52 53 54 55 56 57 58
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
59
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
60 61 62 63 64 65 66 67 68 69
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
70
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
71 72 73
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
74 75 76
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
77
    for i in range(batch_size):
W
weixing02 已提交
78
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
79
        length = code_table.get_length()
W
weixing02 已提交
80
        for j in range(length):
Y
Yancey1989 已提交
81
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
82
            pre_output[i][j] += bias[idx][0]
83 84
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
85
        length = code_table.get_length()
86 87 88
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
89
    # clip[-40.0, 40.0]
W
weixing02 已提交
90
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
91
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
92
    for i in range(batch_size):
W
weixing02 已提交
93
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
94 95
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
96
        for j in range(length):
Y
Yancey1989 已提交
97 98 99 100 101 102 103
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
104
    return pre_output, out
Y
Yancey1989 已提交
105 106


107 108
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
109 110 111
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


131 132 133
def hsigmoidWithCustomTree(
    x, w, path_table, path_code, label, bias, num_classes
):
134
    batch_size = x.shape[0]
135
    code_length = len(path_table[0])
136
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
137
    # init pre_out with shape [N, code_length]
138 139 140
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
141 142
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
143
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
144 145 146 147
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
148
    for i in range(batch_size):
149
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
150 151 152 153 154 155 156 157
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
158
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
159 160 161 162 163 164 165 166 167 168 169 170 171
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


172 173 174
def python_api(
    input,
    label,
175 176
    weight,
    bias=None,
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    path_table=None,
    path_code=None,
    num_classes=-1,
    is_sparse=False,
    remote_prefetch=False,
):
    return paddle.nn.functional.hsigmoid_loss(
        input,
        label,
        num_classes,
        weight,
        bias,
        path_table,
        path_code,
        is_sparse,
    )
193 194 195 196 197


python_out_sig = ["Out"]


J
JiabinYang 已提交
198 199 200
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
201 202
        self.python_api = python_api
        self.python_out_sig = python_out_sig
203 204 205
        num_classes = 101
        feature_size = 5
        batch_size = 20
206 207 208 209 210 211 212 213 214
        x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype(
            'float64'
        )
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype(
            'float64'
        )
        label = np.random.randint(0, num_classes, (batch_size, 1)).astype(
            'int64'
        )
215
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
216 217 218 219
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
220
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
221 222

    def test_check_output(self):
223
        self.check_output(check_eager=True)
J
JiabinYang 已提交
224 225

    def test_check_grad(self):
226 227 228 229 230 231
        self.check_grad(
            ['X', 'W', 'Bias'],
            ['Out'],
            user_defined_grads=self.user_grads,
            check_eager=True,
        )
J
JiabinYang 已提交
232 233


234
@skip_check_grad_ci(
235
    reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
236
)
J
JiabinYang 已提交
237 238 239
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
240 241
        self.python_api = python_api
        self.python_out_sig = python_out_sig
242
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
243 244
        feature_size = 8
        batch_size = 4
245 246
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
247
        label = np.array([0, 1, 4, 5]).astype('int64')
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
268
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
269 270 271 272
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
273
            'PathTable': path_table,
274
            'PathCode': path_code,
J
JiabinYang 已提交
275
            'Label': label,
276
            'Bias': bias,
J
JiabinYang 已提交
277
        }
278 279 280
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
281 282 283
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
284
        self.check_output(check_eager=True)
J
JiabinYang 已提交
285 286 287 288 289


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
290 291 292 293 294 295
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64'
        )
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64'
        )
J
JiabinYang 已提交
296
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
297

298
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
299 300 301

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
302
            is_sparse=is_sparse,
J
JiabinYang 已提交
303
            size=[3, 3],
304 305 306 307 308
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(scale=1 / math.sqrt(3))
            ),
        )

309 310 311 312 313 314 315 316 317
        loss = paddle.nn.HSigmoidLoss(
            feature_size=emb.shape[1],
            num_classes=3,
            bias_attr=True,
            is_custom=True,
            is_sparse=is_sparse,
        )

        cost = loss(
318 319 320 321 322
            input=emb,
            label=label,
            path_table=path_table,
            path_code=path_code,
        )
J
JiabinYang 已提交
323 324 325 326 327

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
328 329
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
330
            paddle.seed(1)
J
JiabinYang 已提交
331 332
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
333 334 335
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
336 337 338 339 340 341 342 343 344 345 346 347

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
348
            for i in range(10):
349 350 351 352 353 354 355 356 357 358 359 360
                data = [
                    (
                        [[x[i % 2]]],
                        [list(path_table[i % 2])],
                        [list(path_code[i % 2])],
                        [label[i % 2]],
                    )
                ]

                loss_val = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[loss]
                )
J
JiabinYang 已提交
361 362 363 364 365 366
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
367
        assert dense_result == sparse_result
J
JiabinYang 已提交
368 369


370
@skip_check_grad_ci(
371
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
372
)
J
JiabinYang 已提交
373 374 375
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
376 377
        self.python_api = python_api
        self.python_out_sig = python_out_sig
378
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
379 380
        feature_size = 8
        batch_size = 4
381 382
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
383
        label = np.array([0, 1, 4, 5]).astype('int64')
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
404
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
405 406 407 408
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
409
            'PathTable': path_table,
410
            'PathCode': path_code,
J
JiabinYang 已提交
411
            'Label': label,
412
            'Bias': bias,
J
JiabinYang 已提交
413
        }
414 415 416
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
417 418 419
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
420
        self.check_output(check_eager=True)
J
JiabinYang 已提交
421 422

    def test_check_grad(self):
423 424 425 426 427 428
        self.check_grad(
            ['Bias', 'X', 'W'],
            ['Out'],
            no_grad_set=set('Label'),
            check_eager=True,
        )
J
JiabinYang 已提交
429

Y
Yancey1989 已提交
430

431
@skip_check_grad_ci(
432
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
433
)
434 435 436
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
437 438
        self.python_api = python_api
        self.python_out_sig = python_out_sig
439
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
440 441
        feature_size = 8
        batch_size = 4
442 443
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
444
        label = np.array([0, 1, 4, 5]).astype('int64')
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
465 466 467 468 469
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
470
            'PathTable': path_table,
471
            'PathCode': path_code,
472 473
            'Label': label,
        }
474 475 476 477 478 479 480 481 482
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
            path_table=path_table,
            path_code=path_code,
            label=label,
            bias=None,
            num_classes=num_classes,
        )
483 484 485
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
486
        self.check_output(check_eager=True)
487 488

    def test_check_grad(self):
489 490 491
        self.check_grad(
            ['X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True
        )
492 493


494 495 496 497 498 499 500 501 502 503 504 505 506
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
507 508 509 510 511
            -1, 1, [self.batch_size, self.feature_size]
        ).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64'
        )
512
        self.weight_np = np.random.uniform(
513 514 515 516 517
            -1, 1, [self.num_classes - 1, self.feature_size]
        ).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype(
            self.dtype
        )
518 519
        self.path_table_np = None
        self.path_code_np = None
520 521 522 523 524 525 526
        _, self.out_np = hsigmoid(
            self.x_np,
            self.weight_np,
            self.labels_np,
            self.bias_np,
            self.num_classes,
        )
527 528 529
        self.set_attrs()

        if self.is_custom:
530 531 532 533 534 535 536 537 538
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np,
                self.weight_np,
                self.path_table_np,
                self.path_code_np,
                self.labels_np,
                self.bias_np.reshape(-1, 1),
                self.num_classes,
            )
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
554 555 556
        out1 = F.hsigmoid_loss(
            x, labels, self.num_classes, weight, bias, path_table, path_code
        )
557 558 559

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
560 561 562 563 564 565 566
        m = paddle.nn.HSigmoidLoss(
            self.feature_size,
            self.num_classes,
            weight_attr,
            bias_attr,
            self.is_custom,
        )
567 568 569
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
570
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
571 572 573 574 575 576 577 578 579
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
580 581 582 583 584 585
            bias = paddle.static.data(
                'bias',
                [
                    -1,
                ],
            )
586 587 588 589 590
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
591 592 593
            out1 = F.hsigmoid_loss(
                x, labels, self.num_classes, weight, bias, path_table, path_code
            )
594 595

            weight_attr = paddle.framework.ParamAttr(
596 597
                initializer=I.NumpyArrayInitializer(self.weight_np)
            )
598
            bias_attr = paddle.framework.ParamAttr(
599 600 601 602 603 604 605 606 607
                initializer=I.NumpyArrayInitializer(self.bias_np)
            )
            m = paddle.nn.HSigmoidLoss(
                self.feature_size,
                self.num_classes,
                weight_attr,
                bias_attr,
                self.is_custom,
            )
608 609 610 611 612 613 614 615
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
616
                'bias': self.bias_np,
617 618 619 620
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
621 622 623
            ret1, ret2 = exe.run(
                train_program, feed=feed_dict, fetch_list=[out1, out2]
            )
624 625

            for ret in [ret1, ret2]:
626
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
627 628 629 630 631 632 633 634 635 636 637 638 639 640

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
641 642 643 644 645 646 647 648 649 650 651 652 653
            loss = paddle.nn.HSigmoidLoss(
                feature_size=x.shape[1],
                num_classes=self.num_classes,
                weight_attr=weight_attr,
                bias_attr=bias_attr,
                is_custom=self.is_custom,
                name='out',
            )
            out = loss(
                input=x,
                label=labels,
                path_table=path_table,
                path_code=path_code,
654
            )
655 656 657 658 659 660 661

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
662
            (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out])
663

664
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
665

666
    def test_errors(self):
667 668 669
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
670 671 672 673 674 675 676 677 678 679
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
680 681 682
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x_int32, label, 8, weight
            )
683

684 685 686 687 688 689
            label_float32 = paddle.static.data(
                'label_float32', [4, 1], 'float32'
            )
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label_float32, 8, weight
            )
690 691

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
692 693 694
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight_int32
            )
695 696

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32
            )

            path_table_int32 = paddle.static.data(
                'path_table_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32,
            )

            path_code_int32 = paddle.static.data(
                'path_code_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32,
            )
726

L
Linjie Chen 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

741

742 743 744
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        self.path_table_np = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(np.int64)
        self.path_code_np = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(np.int64)
761 762 763 764 765

    def test_errors(self):
        pass


Y
Yancey1989 已提交
766 767
if __name__ == '__main__':
    unittest.main()