test_elementwise_max_op.py 8.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
fengjiayi 已提交
15
import unittest
16

F
fengjiayi 已提交
17
import numpy as np
18 19
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci

20
import paddle
21
import paddle.fluid.core as core
F
fengjiayi 已提交
22 23 24 25 26


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_max"
27
        self.python_api = paddle.maximum
F
fengjiayi 已提交
28 29 30
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
31 32 33
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
34 35 36 37
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
38 39 40 41
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
42 43

    def test_check_grad_normal(self):
44 45 46 47
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
48 49

    def test_check_grad_ingore_x(self):
50 51 52
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
F
fengjiayi 已提交
53 54

    def test_check_grad_ingore_y(self):
55 56 57 58 59
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class TestElementwiseMaxOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
        self.python_api = paddle.maximum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
        self.python_api = paddle.maximum
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
        self.python_api = paddle.maximum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


90 91 92 93 94 95 96 97
@unittest.skipIf(
    core.is_compiled_with_cuda()
    and (
        core.cudnn_version() < 8100
        or paddle.device.cuda.get_device_capability()[0] < 8
    ),
    "run test when gpu is availble and the minimum cudnn version is 8.1.0 and gpu's compute capability is at least 8.0.",
)
98 99 100
class TestElementwiseBF16Op(OpTest):
    def setUp(self):
        self.op_type = "elementwise_max"
101
        self.python_api = paddle.maximum
102 103 104 105 106 107 108 109 110
        self.dtype = np.uint16
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        sgn = np.random.choice([-1, 1], [13, 17]).astype(np.float32)
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.inputs = {
            'X': convert_float_to_uint16(x),
111
            'Y': convert_float_to_uint16(y),
112 113 114 115
        }
        self.outputs = {'Out': convert_float_to_uint16(np.maximum(x, y))}

    def test_check_output(self):
116 117 118 119
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
120 121

    def test_check_grad_normal(self):
122 123 124 125
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
126 127 128 129 130 131 132 133

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


134
@skip_check_grad_ci(
135 136
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
137 138 139
class TestElementwiseMaxOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
140
        self.python_api = paddle.maximum
141 142
        x = np.random.random_integers(-5, 5, [2, 3, 20]).astype("float64")
        y = np.array([0.5]).astype("float64")
143 144 145 146
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
147 148 149
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
150
        self.python_api = paddle.maximum
151 152 153
        x = np.random.random((100,)).astype("float64")
        sgn = np.random.choice([-1, 1], (100,)).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100,)).astype("float64")
F
fengjiayi 已提交
154 155 156 157 158 159 160
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
161
        self.python_api = paddle.maximum
162
        x = np.random.uniform(0.5, 1, (100, 5, 2)).astype(np.float64)
163 164 165 166
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[:, 0, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
167 168 169 170
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
171 172 173
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
F
fengjiayi 已提交
174 175 176 177 178 179
        }


class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
180
        self.python_api = paddle.maximum
181
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
182 183 184 185
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, :, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
186 187 188 189
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
190 191 192
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1)
            )
F
fengjiayi 已提交
193 194 195 196 197 198
        }


class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
199
        self.python_api = paddle.maximum
200
        x = np.random.uniform(0.5, 1, (1, 3, 100)).astype(np.float64)
201 202 203 204
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
205 206 207
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
208 209 210
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100)
            )
F
fengjiayi 已提交
211 212 213 214 215 216
        }


class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
217
        self.python_api = paddle.maximum
218 219
        x = np.random.uniform(0.5, 1, (2, 50, 2, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (50, 2)).astype(np.float64)
220 221 222
        y = x[0, :, :, 0] + sgn * np.random.uniform(1, 2, (50, 2)).astype(
            np.float64
        )
F
fengjiayi 已提交
223 224 225 226
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
227 228 229
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 50, 2, 1)
            )
F
fengjiayi 已提交
230 231 232
        }


233 234 235
class TestElementwiseMaxOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
236
        self.python_api = paddle.maximum
237 238
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float64)
239
        y = x + sgn * np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float64)
240 241 242 243 244
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
245 246
if __name__ == '__main__':
    unittest.main()