test_elementwise_max_op.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
fengjiayi 已提交
15 16
import unittest
import numpy as np
17 18
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
import paddle.fluid.core as core
19
import paddle
F
fengjiayi 已提交
20 21 22


class TestElementwiseOp(OpTest):
23

F
fengjiayi 已提交
24 25
    def setUp(self):
        self.op_type = "elementwise_max"
26
        self.python_api = paddle.maximum
F
fengjiayi 已提交
27 28 29
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
30 31 32
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
33 34 35 36
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
37 38 39 40
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
41 42

    def test_check_grad_normal(self):
43 44 45 46
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
47 48

    def test_check_grad_ingore_x(self):
49 50 51 52
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"))
F
fengjiayi 已提交
53 54

    def test_check_grad_ingore_y(self):
55 56 57 58
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'))
F
fengjiayi 已提交
59 60


61 62 63 64 65
@unittest.skipIf(core.is_compiled_with_cuda() and (
    core.cudnn_version() < 8100
    or paddle.device.cuda.get_device_capability()[0] < 8
), "run test when gpu is availble and the minimum cudnn version is 8.1.0 and gpu's compute capability is at least 8.0."
                 )
66
class TestElementwiseBF16Op(OpTest):
67

68 69
    def setUp(self):
        self.op_type = "elementwise_max"
70
        self.python_api = paddle.maximum
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        self.dtype = np.uint16
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        sgn = np.random.choice([-1, 1], [13, 17]).astype(np.float32)
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(np.maximum(x, y))}

    def test_check_output(self):
85 86 87 88
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
89 90

    def test_check_grad_normal(self):
91 92 93 94
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
95 96 97 98 99 100 101 102

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


103 104
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
105
class TestElementwiseMaxOp_scalar(TestElementwiseOp):
106

107 108
    def setUp(self):
        self.op_type = "elementwise_max"
109
        self.python_api = paddle.maximum
110 111
        x = np.random.random_integers(-5, 5, [2, 3, 20]).astype("float64")
        y = np.array([0.5]).astype("float64")
112 113 114 115
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
116
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
117

F
fengjiayi 已提交
118 119
    def setUp(self):
        self.op_type = "elementwise_max"
120
        self.python_api = paddle.maximum
121 122 123
        x = np.random.random((100, )).astype("float64")
        sgn = np.random.choice([-1, 1], (100, )).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
F
fengjiayi 已提交
124 125 126 127 128
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
129

F
fengjiayi 已提交
130 131
    def setUp(self):
        self.op_type = "elementwise_max"
132
        self.python_api = paddle.maximum
133 134
        x = np.random.uniform(0.5, 1, (100, 5, 2)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
135
        y = x[:, 0, 0] + sgn * \
136
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
137 138 139 140
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
141 142
            'Out': np.maximum(self.inputs['X'],
                              self.inputs['Y'].reshape(100, 1, 1))
F
fengjiayi 已提交
143 144 145 146
        }


class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
147

F
fengjiayi 已提交
148 149
    def setUp(self):
        self.op_type = "elementwise_max"
150
        self.python_api = paddle.maximum
151 152
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
153
        y = x[0, :, 0] + sgn * \
154
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
155 156 157 158
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
159 160
            'Out': np.maximum(self.inputs['X'],
                              self.inputs['Y'].reshape(1, 100, 1))
F
fengjiayi 已提交
161 162 163 164
        }


class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
165

F
fengjiayi 已提交
166 167
    def setUp(self):
        self.op_type = "elementwise_max"
168
        self.python_api = paddle.maximum
169 170
        x = np.random.uniform(0.5, 1, (1, 3, 100)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
171
        y = x[0, 0, :] + sgn * \
172
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
173 174 175
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
176 177
            'Out': np.maximum(self.inputs['X'],
                              self.inputs['Y'].reshape(1, 1, 100))
F
fengjiayi 已提交
178 179 180 181
        }


class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
182

F
fengjiayi 已提交
183 184
    def setUp(self):
        self.op_type = "elementwise_max"
185
        self.python_api = paddle.maximum
186 187
        x = np.random.uniform(0.5, 1, (2, 50, 2, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (50, 2)).astype(np.float64)
F
fengjiayi 已提交
188
        y = x[0, :, :, 0] + sgn * \
189
            np.random.uniform(1, 2, (50, 2)).astype(np.float64)
F
fengjiayi 已提交
190 191 192 193 194
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
195
            np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 50, 2, 1))
F
fengjiayi 已提交
196 197 198
        }


199
class TestElementwiseMaxOp_broadcast_4(TestElementwiseOp):
200

201 202
    def setUp(self):
        self.op_type = "elementwise_max"
203
        self.python_api = paddle.maximum
204 205
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float64)
206
        y = x + sgn * \
207
            np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float64)
208 209 210 211 212
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
213 214
if __name__ == '__main__':
    unittest.main()