test_elementwise_max_op.py 7.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
fengjiayi 已提交
15 16
import unittest
import numpy as np
17 18
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
import paddle.fluid.core as core
19
import paddle
F
fengjiayi 已提交
20 21 22 23 24


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_max"
25
        self.python_api = paddle.maximum
F
fengjiayi 已提交
26 27 28
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
29 30 31
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
32 33 34 35
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
36 37 38 39
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
40 41

    def test_check_grad_normal(self):
42 43 44 45
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
46 47

    def test_check_grad_ingore_x(self):
48 49 50
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
F
fengjiayi 已提交
51 52

    def test_check_grad_ingore_y(self):
53 54 55 56 57 58 59 60 61 62 63 64 65
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )


@unittest.skipIf(
    core.is_compiled_with_cuda()
    and (
        core.cudnn_version() < 8100
        or paddle.device.cuda.get_device_capability()[0] < 8
    ),
    "run test when gpu is availble and the minimum cudnn version is 8.1.0 and gpu's compute capability is at least 8.0.",
)
66 67 68
class TestElementwiseBF16Op(OpTest):
    def setUp(self):
        self.op_type = "elementwise_max"
69
        self.python_api = paddle.maximum
70 71 72 73 74 75 76 77 78
        self.dtype = np.uint16
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        sgn = np.random.choice([-1, 1], [13, 17]).astype(np.float32)
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.inputs = {
            'X': convert_float_to_uint16(x),
79
            'Y': convert_float_to_uint16(y),
80 81 82 83
        }
        self.outputs = {'Out': convert_float_to_uint16(np.maximum(x, y))}

    def test_check_output(self):
84 85 86 87
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
88 89

    def test_check_grad_normal(self):
90 91 92 93
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
94 95 96 97 98 99 100 101

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


102
@skip_check_grad_ci(
103 104
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
105 106 107
class TestElementwiseMaxOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
108
        self.python_api = paddle.maximum
109 110
        x = np.random.random_integers(-5, 5, [2, 3, 20]).astype("float64")
        y = np.array([0.5]).astype("float64")
111 112 113 114
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
115 116 117
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
118
        self.python_api = paddle.maximum
119 120 121
        x = np.random.random((100,)).astype("float64")
        sgn = np.random.choice([-1, 1], (100,)).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100,)).astype("float64")
F
fengjiayi 已提交
122 123 124 125 126 127 128
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
129
        self.python_api = paddle.maximum
130
        x = np.random.uniform(0.5, 1, (100, 5, 2)).astype(np.float64)
131 132 133 134
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[:, 0, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
135 136 137 138
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
139 140 141
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
F
fengjiayi 已提交
142 143 144 145 146 147
        }


class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
148
        self.python_api = paddle.maximum
149
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
150 151 152 153
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, :, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
154 155 156 157
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
158 159 160
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1)
            )
F
fengjiayi 已提交
161 162 163 164 165 166
        }


class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
167
        self.python_api = paddle.maximum
168
        x = np.random.uniform(0.5, 1, (1, 3, 100)).astype(np.float64)
169 170 171 172
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
173 174 175
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
176 177 178
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100)
            )
F
fengjiayi 已提交
179 180 181 182 183 184
        }


class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
185
        self.python_api = paddle.maximum
186 187
        x = np.random.uniform(0.5, 1, (2, 50, 2, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (50, 2)).astype(np.float64)
188 189 190
        y = x[0, :, :, 0] + sgn * np.random.uniform(1, 2, (50, 2)).astype(
            np.float64
        )
F
fengjiayi 已提交
191 192 193 194
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
195 196 197
            'Out': np.maximum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 50, 2, 1)
            )
F
fengjiayi 已提交
198 199 200
        }


201 202 203
class TestElementwiseMaxOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_max"
204
        self.python_api = paddle.maximum
205 206
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float64)
207
        y = x + sgn * np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float64)
208 209 210 211 212
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
213 214
if __name__ == '__main__':
    unittest.main()