lr.py 87.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings
17 18 19 20

import numpy

from paddle import Tensor
21
from paddle.fluid import core
22

G
guguguzi 已提交
23
__all__ = [  # noqa
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    'LRScheduler',
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'LinearWarmup',
    'ExponentialDecay',
    'MultiStepDecay',
    'StepDecay',
    'LambdaDecay',
    'ReduceOnPlateau',
    'CosineAnnealingDecay',
    'MultiplicativeDecay',
    'OneCycleLR',
    'CyclicLR',
40 41 42
]


43
class LRScheduler:
44 45 46 47
    """

    LRScheduler Base class. Define the common interface of a learning rate scheduler.

Z
Zhou Wei 已提交
48
    User can import it by ``from paddle.optimizer.lr import LRScheduler`` ,
49 50 51 52 53 54 55 56 57 58 59 60 61 62

    then overload it for your subclass and have a custom implementation of ``get_lr()`` .

    Otherwise, an ``NotImplementedError`` exception will be thrown.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        instance to schedule learning rate.

    Examples:
63
        Here is an example of a simple ``StepDecay`` implementation.
G
guguguzi 已提交
64

65
        .. code-block:: python
G
guguguzi 已提交
66

67
            import paddle
Z
Zhou Wei 已提交
68
            from paddle.optimizer.lr import LRScheduler
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

            class StepDecay(LRScheduler):
                def __init__(self,
                            learning_rate,
                            step_size,
                            gamma=0.1,
                            last_epoch=-1,
                            verbose=False):
                    if not isinstance(step_size, int):
                        raise TypeError(
                            "The type of 'step_size' must be 'int', but received %s." %
                            type(step_size))
                    if gamma >= 1.0:
                        raise ValueError('gamma should be < 1.0.')

                    self.step_size = step_size
                    self.gamma = gamma
86
                    super().__init__(learning_rate, last_epoch, verbose)
87 88 89 90

                def get_lr(self):
                    i = self.last_epoch // self.step_size
                    return self.base_lr * (self.gamma**i)
91 92 93 94 95 96

    """

    def __init__(self, learning_rate=0.1, last_epoch=-1, verbose=False):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
97 98 99 100
                "The type of learning rate must be float, but received {}".format(
                    type(learning_rate)
                )
            )
101 102
        if learning_rate < 0:
            raise ValueError(f"Invalid learning rate: {learning_rate}")
103 104 105 106 107 108 109 110 111
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = last_epoch
        self.verbose = verbose
        self._var_name = None

        self.step()

    def __call__(self):
G
guguguzi 已提交
112
        """
S
Shuangchi He 已提交
113
        Return latest computed learning rate on current epoch.
114 115 116 117 118
        """
        return self.last_lr

    def step(self, epoch=None):
        """
119

G
guguguzi 已提交
120
        ``step`` should be called after ``optimizer.step`` . It will update the learning rate in optimizer according to current ``epoch`` .
121
        The new learning rate will take effect on next ``optimizer.step`` .
122 123 124 125 126 127

        Args:
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
128

129 130 131 132 133 134 135 136 137 138 139 140
        Examples:
            .. code-block:: python
                import paddle
                value = paddle.arange(26, dtype='float32')
                a = paddle.reshape(value, [2, 13])
                linear = paddle.nn.Linear(13, 5)
                adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95,
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adadelta.step()
                adadelta.clear_grad()
141 142 143 144 145 146 147 148 149 150 151 152
        """
        if epoch is None:
            self.last_epoch += 1
            self.last_lr = self.get_lr()
        else:
            self.last_epoch = epoch
            if hasattr(self, "_get_closed_form_lr"):
                self.last_lr = self._get_closed_form_lr()
            else:
                self.last_lr = self.get_lr()

        if self.verbose:
153 154 155 156 157
            print(
                'Epoch {}: {} set learning rate to {}.'.format(
                    self.last_epoch, self.__class__.__name__, self.last_lr
                )
            )
158 159 160

    def state_dict(self):
        """
161

162 163
        Returns the state of the scheduler as a :class:`dict`.

164
        It is a subset of ``self.__dict__`` .
165
        """
166
        self.state_keys()
167 168 169 170 171 172
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Tensor):
173 174 175 176
                assert (
                    value.size == 1
                ), "numel of Tensor in state_dict must be 1"
                value = float(value)
177 178 179 180
            state_dict[key] = value

        return state_dict

181
    # For those subclass who overload LRScheduler, "last_epoch, last_lr" will be saved by default.
182
    # (Note): you can change it for your subclass.
183
    def state_keys(self):
184
        """
185 186 187 188 189 190 191

        For those subclass who overload ``LRScheduler`` (Base Class). Acquiescently, "last_epoch, last_lr" will be saved by ``self.keys = ['last_epoch', 'last_lr']`` .

        ``last_epoch`` is the current epoch num, and ``last_lr`` is the current learning rate.

        If you want to change the default behavior, you should have a custom implementation of ``_state_keys()`` to redefine ``self.keys`` .

192 193 194
        """
        self.keys = ['last_epoch', 'last_lr']

195
    def set_state_dict(self, state_dict):
196
        """
197

198 199
        Loads the schedulers state.
        """
200
        self.state_keys()
201 202 203 204 205
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
206 207 208 209
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
210 211 212 213 214
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

215 216
    # alias for set_state_dict
    set_dict = set_state_dict
217 218

    def get_lr(self):
219
        """
G
guguguzi 已提交
220

221 222 223 224
        For those subclass who overload ``LRScheduler`` (Base Class), User should have a custom implementation of ``get_lr()`` .

        Otherwise, an ``NotImplementedError`` exception will be thrown.
        """
225 226 227 228
        # calculate by python float
        raise NotImplementedError


229
class NoamDecay(LRScheduler):
230
    r"""
231

G
guguguzi 已提交
232
    Applies Noam Decay to the initial learning rate.
233 234 235 236 237 238 239

    The algorithm can be described as following.

    .. math::

        new\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(epoch^{-0.5}, epoch * warmup\_steps^{-1.5})

G
guguguzi 已提交
240
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
241 242 243 244 245 246 247


    Args:
        d$_{model}$(int): The dimensionality of input and output feature vector of model. It is a python int number.
        warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number
        learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
248
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
249 250

    Returns:
251
        ``NoamDecay`` instance to schedule learning rate.
252 253 254

    Examples:
        .. code-block:: python
255
            :name: code-example1
256

257
            # Example1: train on default dynamic graph mode
258 259 260
            import paddle
            import numpy as np

261
            # train on default dynamic graph mode
262
            linear = paddle.nn.Linear(10, 10)
263 264
            scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
265
            for epoch in range(20):
Z
Zhou Wei 已提交
266
                for batch_id in range(5):
267
                    x = paddle.uniform([10, 10])
268
                    out = linear(x)
C
chentianyu03 已提交
269
                    loss = paddle.mean(out)
270
                    loss.backward()
271 272
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
273 274
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
275

276 277 278 279 280 281
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
282 283 284 285
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
286 287
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
288 289
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
290
                scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
291 292 293 294 295 296
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
297
                for batch_id in range(5):
298 299 300 301 302 303
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
304
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
305 306
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
307 308 309

    """

310 311 312 313 314 315 316 317
    def __init__(
        self,
        d_model,
        warmup_steps,
        learning_rate=1.0,
        last_epoch=-1,
        verbose=False,
    ):
318 319 320
        if d_model <= 0:
            raise ValueError("d_model should be grater than 0")

321 322
        self.d_model = d_model
        self.warmup_steps = warmup_steps
323
        super().__init__(learning_rate, last_epoch, verbose)
324 325 326 327 328 329 330 331 332 333

    def get_lr(self):
        if self.last_epoch == 0:
            a = 1
        else:
            a = self.last_epoch**-0.5
        b = self.warmup_steps**-1.5 * self.last_epoch
        return self.base_lr * (self.d_model**-0.5) * min(a, b)


334
class PiecewiseDecay(LRScheduler):
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    """

    Piecewise learning rate scheduler.

    The algorithm can be described as the code below:

    .. code-block:: text

        boundaries = [100, 200]
        values = [1.0, 0.5, 0.1]
        if epoch < 100:
            learning_rate = 1.0
        elif 100 <= global_step < 200:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Args:
G
guguguzi 已提交
353 354
        boundaries(list|tuple): A list/tuple of steps numbers. The type of element in the list is python int.
        values(list|tuple): A list/tuple of learning rate values that will be picked during different epoch boundaries.
355
            The type of element in the list is python float. The ``values`` have one more element than ``boundaries``.
356
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
357
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
358 359

    Returns:
360
        ``PiecewiseDecay`` instance to schedule learning rate.
361 362

    Examples:
G
guguguzi 已提交
363

364
        .. code-block:: python
365
            :name: code-example1
366

367
            # Example1: train on default dynamic graph mode
368 369 370
            import paddle
            import numpy as np

371
            # train on default dynamic graph mode
372
            linear = paddle.nn.Linear(10, 10)
373 374
            scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
375
            for epoch in range(20):
Z
Zhou Wei 已提交
376
                for batch_id in range(5):
377
                    x = paddle.uniform([10, 10])
378
                    out = linear(x)
C
chentianyu03 已提交
379
                    loss = paddle.mean(out)
380
                    loss.backward()
381 382
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
383 384
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
385

386 387 388 389 390 391
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
392 393 394 395
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
396 397
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
398 399
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
400
                scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
401 402 403 404 405 406
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
407
                for batch_id in range(5):
408 409 410 411 412 413
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
414
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
415 416
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
417 418 419
    """

    def __init__(self, boundaries, values, last_epoch=-1, verbose=False):
420 421 422 423 424 425 426 427
        if len(boundaries) == 0:
            raise ValueError('The boundaries cannot be empty.')

        if len(values) <= len(boundaries):
            raise ValueError(
                f'The values have one more element than boundaries, but received len(values) [{len(values)}] < len(boundaries) + 1 [{len(boundaries) + 1}].'
            )

428 429
        self.boundaries = boundaries
        self.values = values
430
        super().__init__(last_epoch=last_epoch, verbose=verbose)
431 432 433 434 435 436 437 438

    def get_lr(self):
        for i in range(len(self.boundaries)):
            if self.last_epoch < self.boundaries[i]:
                return self.values[i]
        return self.values[len(self.values) - 1]


439
class NaturalExpDecay(LRScheduler):
440
    r"""
441 442

    Applies natural exponential decay to the initial learning rate.
G
guguguzi 已提交
443

444 445 446 447
    The algorithm can be described as following:

    .. math::

448
        new\_learning\_rate = learning\_rate * e^{- gamma * epoch}
449 450 451

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
452
        gamma (float, optional): A Ratio to update the learning rate, should greater than 0.0 to make learning rate decay. Default: 0.1.
453
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
454
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
455 456

    Returns:
457
        ``NaturalExpDecay`` instance to schedule learning rate.
458 459

    Examples:
G
guguguzi 已提交
460

461
        .. code-block:: python
462
            :name: code-example1
463

464
            # Example1: train on default dynamic graph mode
465 466 467
            import paddle
            import numpy as np
            linear = paddle.nn.Linear(10, 10)
468 469
            scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
470
            for epoch in range(20):
Z
Zhou Wei 已提交
471
                for batch_id in range(5):
472
                    x = paddle.uniform([10, 10])
473
                    out = linear(x)
C
chentianyu03 已提交
474
                    loss = paddle.mean(out)
475
                    loss.backward()
476 477
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
478 479
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
480

481 482 483 484 485 486
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
487 488 489 490
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
491 492
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
493 494
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
495
                scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
496 497 498 499 500 501
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
502
                for batch_id in range(5):
503 504 505 506 507 508
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
509
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
510 511
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
512 513 514
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
515 516 517
        assert (
            gamma > 0.0
        ), " 'gamma' must be a positive number so that the learning rate will decay."
518
        self.gamma = gamma
519
        super().__init__(learning_rate, last_epoch, verbose)
520 521 522 523 524

    def get_lr(self):
        return self.base_lr * math.exp(-1 * self.gamma * self.last_epoch)


525
class InverseTimeDecay(LRScheduler):
526
    r"""
527 528 529 530 531 532 533

    Applies inverse time decay to the initial learning rate.

    The algorithm can be described as following:

    .. math::

534
        new\_learning\_rate = \frac{learning\_rate}{1 + gamma * epoch}
535 536 537

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
538
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
539 540
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
541
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
542 543

    Returns:
544
        ``InverseTimeDecay`` instance to schedule learning rate.
545 546

    Examples:
G
guguguzi 已提交
547

548
        .. code-block:: python
549
            :name: code-example1
550

551
            # Example1: train on default dynamic graph mode
552 553 554
            import paddle
            import numpy as np

555
            # train on default dynamic graph mode
556
            linear = paddle.nn.Linear(10, 10)
557 558
            scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
559
            for epoch in range(20):
Z
Zhou Wei 已提交
560
                for batch_id in range(5):
561
                    x = paddle.uniform([10, 10])
562
                    out = linear(x)
C
chentianyu03 已提交
563
                    loss = paddle.mean(out)
564
                    loss.backward()
565 566
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
567 568
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
569

570 571 572 573 574 575
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
576 577 578 579
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
580 581
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
582 583
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
584
                scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
585 586 587 588 589 590
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
591
                for batch_id in range(5):
592 593 594 595 596 597
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
598
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
599 600
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
601 602 603 604 605

    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
606
        super().__init__(learning_rate, last_epoch, verbose)
607 608 609 610 611

    def get_lr(self):
        return self.base_lr / (1 + self.gamma * self.last_epoch)


612
class PolynomialDecay(LRScheduler):
613
    r"""
614 615 616 617 618 619 620 621 622

    Applies polynomial decay to the initial learning rate.

    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

G
guguguzi 已提交
623
        decay\_steps & = decay\_steps * math.ceil(\frac{epoch}{decay\_steps})
624

625
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
626 627 628 629 630

    If cycle is set to False, then:

    .. math::

G
guguguzi 已提交
631
        epoch & = min(epoch, decay\_steps)
632

633
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
634 635 636 637


    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
638
        decay_steps(int): The decay step size. It determines the decay cycle. It must be a positive integer.
639
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
640
        power(float, optional): Power of polynomial, should greater than 0.0 to get learning rate decay. Default: 1.0.
G
guguguzi 已提交
641
        cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease
642 643
            to ``end_lr`` .  If False, the learning rate is monotone decreasing. Default: False.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
644
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
645 646

    Returns:
647
        ``PolynomialDecay`` instance to schedule learning rate.
648 649

    Examples:
G
guguguzi 已提交
650

651
        .. code-block:: python
652
            :name: code-example1
653

654
            # Example1: train on default dynamic graph mode
655 656 657
            import paddle
            import numpy as np

658
            # train on default dynamic graph mode
659
            linear = paddle.nn.Linear(10, 10)
660 661
            scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
662
            for epoch in range(20):
Z
Zhou Wei 已提交
663
                for batch_id in range(5):
664
                    x = paddle.uniform([10, 10])
665
                    out = linear(x)
C
chentianyu03 已提交
666
                    loss = paddle.mean(out)
667
                    loss.backward()
668 669
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
670 671
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
672

673 674 675 676 677 678
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
679 680 681 682
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
683 684
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
685 686
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
687
                scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
688 689 690 691 692 693
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
694
                for batch_id in range(5):
695 696 697 698 699 700
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
701
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
702 703
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
704 705
    """

706 707 708 709 710 711 712 713 714 715
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_lr=0.0001,
        power=1.0,
        cycle=False,
        last_epoch=-1,
        verbose=False,
    ):
716
        assert decay_steps > 0 and isinstance(
717 718
            decay_steps, int
        ), " 'decay_steps' must be a positive integer."
719 720
        self.decay_steps = decay_steps
        self.end_lr = end_lr
721 722 723
        assert (
            power > 0.0
        ), " 'power' must be greater than 0.0 so that the learning rate will decay."
724 725
        self.power = power
        self.cycle = cycle
726
        super().__init__(learning_rate, last_epoch, verbose)
727 728 729 730 731 732

    def get_lr(self):
        tmp_epoch_num = self.last_epoch
        tmp_decay_steps = self.decay_steps
        if self.cycle:
            div_res = math.ceil(
733 734
                float(self.last_epoch) / float(self.decay_steps)
            )
735 736 737 738 739 740 741 742

            if self.last_epoch == 0:
                div_res = 1
            tmp_decay_steps = self.decay_steps * div_res
        else:
            tmp_epoch_num = min(self.last_epoch, self.decay_steps)

        return (self.base_lr - self.end_lr) * (
743 744
            (1 - float(tmp_epoch_num) / float(tmp_decay_steps)) ** self.power
        ) + self.end_lr
745 746


747
class LinearWarmup(LRScheduler):
748
    r"""
749 750 751

    Linear learning rate warm up strategy. Update the learning rate preliminarily before the normal learning rate scheduler.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
G
guguguzi 已提交
752

753
    When epoch < warmup_steps, learning rate is updated as:
G
guguguzi 已提交
754

755
    .. math::
G
guguguzi 已提交
756

757
            lr = start\_lr + (end\_lr - start\_lr) * \frac{epoch}{warmup\_steps}
G
guguguzi 已提交
758

759
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
G
guguguzi 已提交
760

761
    When epoch >= warmup_steps, learning rate is updated as:
G
guguguzi 已提交
762

763
    .. math::
G
guguguzi 已提交
764

765
            lr = learning_rate
G
guguguzi 已提交
766

767
    where ``learning_rate`` is float or any subclass of ``LRScheduler`` .
768 769

    Args:
770
        learning_rate (float|LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``LRScheduler`` .
771
        warmup_steps (int): total steps of warm up. It must be a positive integer.
772 773 774
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
775
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
776 777

    Returns:
778
        ``LinearWarmup`` instance to schedule learning rate.
779 780

    Examples:
G
guguguzi 已提交
781

782
        .. code-block:: python
783
            :name: code-example1
784

785
            # Example1: train on default dynamic graph mode
786 787 788
            import paddle
            import numpy as np

789
            # train on default dynamic graph mode
790
            linear = paddle.nn.Linear(10, 10)
791
            scheduler = paddle.optimizer.lr.LinearWarmup(
792
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
793
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
794
            for epoch in range(20):
Z
Zhou Wei 已提交
795
                for batch_id in range(5):
796
                    x = paddle.uniform([10, 10])
797
                    out = linear(x)
C
chentianyu03 已提交
798
                    loss = paddle.mean(out)
799
                    loss.backward()
800 801
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
802 803
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
804

805 806 807 808 809 810
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
811 812 813 814
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
815 816
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
817 818
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
819
                scheduler = paddle.optimizer.lr.LinearWarmup(
820 821 822 823 824 825 826
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
827
                for batch_id in range(5):
828 829 830 831 832 833
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
834
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
835 836
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
837 838
    """

839 840 841 842 843 844 845 846 847
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        last_epoch=-1,
        verbose=False,
    ):
848
        type_check = isinstance(learning_rate, (float, int, LRScheduler))
849 850
        if not type_check:
            raise TypeError(
851 852 853 854
                "the type of learning_rate should be [int, float or LRScheduler], the current type is {}".format(
                    learning_rate
                )
            )
855
        self.learning_rate = learning_rate
856
        assert warmup_steps > 0 and isinstance(
857 858
            warmup_steps, int
        ), " 'warmup_steps' must be a positive integer."
859 860 861
        self.warmup_steps = warmup_steps
        self.start_lr = start_lr
        self.end_lr = end_lr
862 863
        assert (
            end_lr > start_lr
864
        ), f"end_lr {end_lr} must be greater than start_lr {start_lr}"
865
        super().__init__(start_lr, last_epoch, verbose)
866

867 868 869 870 871 872
    def state_dict(self):
        """
        Returns the state of the LinearWarmup scheduler as a :class:`dict`.

        It is a subset of ``self.__dict__`` .
        """
873
        state_dict = super().state_dict()
874 875 876 877 878 879 880 881
        if isinstance(self.learning_rate, LRScheduler):
            state_dict["LinearWarmup_LR"] = self.learning_rate.state_dict()
        return state_dict

    def set_state_dict(self, state_dict):
        """
        Loads state_dict for LinearWarmup scheduler.
        """
882
        super().set_state_dict(state_dict)
883 884 885
        if isinstance(self.learning_rate, LRScheduler):
            self.learning_rate.set_state_dict(state_dict["LinearWarmup_LR"])

886 887 888
    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            return (self.end_lr - self.start_lr) * float(
889 890
                self.last_epoch
            ) / float(self.warmup_steps) + self.start_lr
891
        else:
892
            if isinstance(self.learning_rate, LRScheduler):
893 894
                self.learning_rate.step(self.last_epoch - self.warmup_steps)
                return self.learning_rate()
895 896 897 898

            return self.learning_rate


899
class ExponentialDecay(LRScheduler):
900
    r"""
901

902
    Update learning rate by `gamma` each epoch.
903 904

    The algorithm can be described as following.
G
guguguzi 已提交
905

906 907 908 909 910 911
    .. math::

        new\_learning\_rate = last\_learning\_rate * gamma

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
912
        gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
913
            It should be in interval (0.0, 1.0).
914
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
915
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
916 917

    Returns:
918
        ``ExponentialDecay`` instance to schedule learning rate.
919 920

    Examples:
G
guguguzi 已提交
921

922
        .. code-block:: python
923
            :name: code-example1
924

925
            # Example1: train on default dynamic graph mode
926 927 928
            import paddle
            import numpy as np

929
            # train on default dynamic graph mode
930
            linear = paddle.nn.Linear(10, 10)
931 932
            scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
933
            for epoch in range(20):
Z
Zhou Wei 已提交
934
                for batch_id in range(5):
935
                    x = paddle.uniform([10, 10])
936
                    out = linear(x)
C
chentianyu03 已提交
937
                    loss = paddle.mean(out)
938
                    loss.backward()
939 940
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
941 942
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
943

944 945 946 947 948 949
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
950 951 952 953
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
954 955
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
956 957
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
958
                scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
959 960 961 962 963 964
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
965
                for batch_id in range(5):
966 967 968 969 970 971
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
972
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
973 974
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
975 976 977
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
978 979 980
        assert (
            gamma > 0.0 and gamma < 1.0
        ), " 'gamma' must be in interval (0.0, 1.0) so that the learning rate will decay."
981
        self.gamma = gamma
982
        super().__init__(learning_rate, last_epoch, verbose)
983 984 985 986 987

    def get_lr(self):
        return self.base_lr * (self.gamma**self.last_epoch)


988
class MultiStepDecay(LRScheduler):
989
    """
990
    Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
991

G
guguguzi 已提交
992
    The algorithm can be described as the code below.
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        gamma = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
G
guguguzi 已提交
1009
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
1010 1011
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1012
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
1013

1014 1015

    Returns:
1016
        ``MultiStepDecay`` instance to schedule learning rate.
1017 1018

    Examples:
G
guguguzi 已提交
1019

1020
        .. code-block:: python
1021
            :name: code-example1
1022

1023
            # Example1: train on default dynamic graph mode
1024 1025 1026
            import paddle
            import numpy as np

1027
            # train on default dynamic graph mode
1028
            linear = paddle.nn.Linear(10, 10)
1029 1030
            scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1031
            for epoch in range(20):
Z
Zhou Wei 已提交
1032
                for batch_id in range(5):
1033
                    x = paddle.uniform([10, 10])
1034
                    out = linear(x)
C
chentianyu03 已提交
1035
                    loss = paddle.mean(out)
1036
                    loss.backward()
1037 1038
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1039 1040
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1041

1042 1043 1044 1045 1046 1047
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
1048 1049 1050 1051
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1052 1053
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1054 1055
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1056
                scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
1057 1058 1059 1060 1061 1062
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1063
                for batch_id in range(5):
1064 1065 1066 1067 1068 1069
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1070
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1071 1072
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1073 1074
    """

1075 1076 1077
    def __init__(
        self, learning_rate, milestones, gamma=0.1, last_epoch=-1, verbose=False
    ):
1078 1079 1080
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1081 1082
                % type(milestones)
            )
1083

1084
        if not all(
1085 1086
            milestones[i] < milestones[i + 1]
            for i in range(len(milestones) - 1)
1087
        ):
1088 1089 1090 1091 1092 1093
            raise ValueError('The elements of milestones must be incremented')
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

        self.milestones = milestones
        self.gamma = gamma
1094
        super().__init__(learning_rate, last_epoch, verbose)
1095 1096 1097 1098 1099

    def get_lr(self):
        for i in range(len(self.milestones)):
            if self.last_epoch < self.milestones[i]:
                return self.base_lr * (self.gamma**i)
1100
        return self.base_lr * (self.gamma ** len(self.milestones))
1101 1102


1103
class StepDecay(LRScheduler):
1104 1105 1106
    """
    Update the learning rate of ``optimizer`` by ``gamma`` every ``step_size`` number of epoch.

G
guguguzi 已提交
1107
    The algorithm can be described as the code below.
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        gamma = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
1122
        step_size (int): the interval to update. It must be a positive integer.
G
guguguzi 已提交
1123
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
1124 1125
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1126
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1127 1128

    Returns:
1129
        ``StepDecay`` instance to schedule learning rate.
1130 1131 1132


    Examples:
G
guguguzi 已提交
1133

1134
        .. code-block:: python
1135
            :name: code-example1
1136

1137
            # Example1: train on default dynamic graph mode
1138 1139 1140
            import paddle
            import numpy as np

1141
            # train on default dynamic graph mode
1142
            linear = paddle.nn.Linear(10, 10)
1143 1144
            scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1145
            for epoch in range(20):
Z
Zhou Wei 已提交
1146
                for batch_id in range(5):
1147
                    x = paddle.uniform([10, 10])
1148
                    out = linear(x)
C
chentianyu03 已提交
1149
                    loss = paddle.mean(out)
1150
                    loss.backward()
1151 1152
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1153 1154
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1155

1156 1157 1158 1159 1160 1161
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
1162 1163 1164 1165
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1166 1167
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1168 1169
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1170
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
1171 1172 1173 1174 1175 1176
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1177
                for batch_id in range(5):
1178 1179 1180 1181 1182 1183
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1184
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1185 1186
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1187 1188
    """

1189 1190 1191
    def __init__(
        self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False
    ):
1192 1193
        if not isinstance(step_size, int):
            raise TypeError(
1194 1195 1196
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1197 1198 1199
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

1200
        assert step_size > 0 and isinstance(
1201 1202
            step_size, int
        ), " 'step_size' must be a positive integer."
1203 1204
        self.step_size = step_size
        self.gamma = gamma
1205
        super().__init__(learning_rate, last_epoch, verbose)
1206 1207 1208 1209 1210 1211

    def get_lr(self):
        i = self.last_epoch // self.step_size
        return self.base_lr * (self.gamma**i)


1212
class LambdaDecay(LRScheduler):
1213
    """
C
co63oc 已提交
1214
    Sets the learning rate of ``optimizer`` by function ``lr_lambda`` . ``lr_lambda`` is function which receives ``epoch`` .
1215

G
guguguzi 已提交
1216
    The algorithm can be described as the code below.
1217 1218 1219 1220 1221 1222

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

1223 1224 1225
        learning_rate = 0.5        # epoch 0, 0.5*0.95**0
        learning_rate = 0.475      # epoch 1, 0.5*0.95**1
        learning_rate = 0.45125    # epoch 2, 0.5*0.95**2
1226 1227 1228 1229 1230

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1231
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
1232

1233
    Returns:
1234
        ``LambdaDecay`` instance to schedule learning rate.
1235 1236

    Examples:
G
guguguzi 已提交
1237

1238
        .. code-block:: python
1239
            :name: code-example1
1240

1241
            # Example1: train on default dynamic graph mode
1242 1243 1244
            import paddle
            import numpy as np

1245
            # train on default dynamic graph mode
1246
            linear = paddle.nn.Linear(10, 10)
1247 1248
            scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1249
            for epoch in range(20):
Z
Zhou Wei 已提交
1250
                for batch_id in range(5):
1251
                    x = paddle.uniform([10, 10])
1252
                    out = linear(x)
C
chentianyu03 已提交
1253
                    loss = paddle.mean(out)
1254
                    loss.backward()
1255 1256
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1257 1258
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1259

1260 1261 1262 1263 1264 1265
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
1266 1267 1268 1269
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1270 1271
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1272 1273
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1274
                scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
1275 1276 1277 1278 1279 1280
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1281
                for batch_id in range(5):
1282 1283 1284 1285 1286 1287
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1288
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1289 1290
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1291 1292 1293 1294 1295 1296

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
1297
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1298 1299
                % type(lr_lambda)
            )
1300 1301

        self.lr_lambda = lr_lambda
1302
        super().__init__(learning_rate, last_epoch, verbose)
1303 1304 1305 1306 1307

    def get_lr(self):
        return self.base_lr * self.lr_lambda(self.last_epoch)


1308
class ReduceOnPlateau(LRScheduler):
1309
    """
G
guguguzi 已提交
1310
    Reduce learning rate when ``metrics`` has stopped descending. Models often benefit from reducing the learning rate
1311 1312
    by 2 to 10 times once model performance has no longer improvement.

1313
    The ``metrics`` is the one which has been pass into ``step`` , it's shape must [] or [1]. When ``metrics``
G
guguguzi 已提交
1314 1315
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * factor`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``metrics`` stop ascending for a ``patience``
1316 1317 1318 1319 1320 1321
    number of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming above operation.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
1322 1323
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
1324
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
G
guguguzi 已提交
1325
        factor (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * factor`` .
1326
            It should be less than 1.0. Default: 0.1.
G
guguguzi 已提交
1327
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
1328
            Default: 10.
G
guguguzi 已提交
1329
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
1330 1331
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
G
guguguzi 已提交
1332
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
1333 1334 1335
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
G
guguguzi 已提交
1336
        epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon,
1337
            the update is ignored. Default: 1e-8.
1338 1339
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.

G
guguguzi 已提交
1340

1341
    Returns:
1342
        ``ReduceOnPlateau`` instance to schedule learning rate.
1343 1344 1345 1346


    Examples:
        .. code-block:: python
1347
            :name: code-example1
1348

1349
            # Example1: train on default dynamic graph mode
1350 1351 1352
            import paddle
            import numpy as np

1353
            # train on default dynamic graph mode
1354
            linear = paddle.nn.Linear(10, 10)
1355 1356
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1357
            for epoch in range(20):
Z
Zhou Wei 已提交
1358
                for batch_id in range(5):
1359
                    x = paddle.uniform([10, 10])
1360
                    out = linear(x)
C
chentianyu03 已提交
1361
                    loss = paddle.mean(out)
1362
                    loss.backward()
1363 1364
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1365 1366
                    scheduler.step(loss)    # If you update learning rate each step
              # scheduler.step(loss)        # If you update learning rate each epoch
1367

1368 1369 1370 1371 1372 1373
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
1374 1375 1376 1377
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1378 1379
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1380 1381
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1382
                scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
1383 1384 1385 1386 1387 1388
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1389
                for batch_id in range(5):
1390 1391 1392 1393 1394 1395
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1396
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1397 1398
                    scheduler.step(out[0])    # If you update learning rate each step
              # scheduler.step(out[0])        # If you update learning rate each epoch
1399 1400 1401

    """

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    def __init__(
        self,
        learning_rate,
        mode='min',
        factor=0.1,
        patience=10,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        epsilon=1e-8,
        verbose=False,
    ):
1415 1416 1417 1418 1419 1420 1421
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode: ' + mode + ' is unknown!')
        self.mode = mode

        if factor >= 1.0:
            raise ValueError(
1422 1423
                'new_lr = origin_lr * gamma and gamma should be < 1.0.'
            )
1424 1425 1426 1427
        self.factor = factor

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
1428 1429 1430
            raise ValueError(
                'threshold mode: ' + threshold_mode + ' is unknown!'
            )
1431 1432 1433
        self.threshold_mode = threshold_mode
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
1434
                "The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s."
1435 1436
                % type(learning_rate)
            )
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = min_lr
        self.epsilon = epsilon

        self.cooldown_counter = 0
        self.best = None
        self.num_bad_epochs = 0

        # Can not call Parent __init__, so implement here.
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = 0
        self.verbose = verbose
        self._var_name = None

    # "cooldown_counter / best / num_bad_epochs / last_epoch / last_lr" will be stored.
1457
    def state_keys(self):
1458
        self.keys = [
1459 1460 1461 1462 1463
            'cooldown_counter',
            'best',
            'num_bad_epochs',
            'last_epoch',
            'last_lr',
1464 1465 1466 1467
        ]

    def step(self, metrics, epoch=None):
        """
G
guguguzi 已提交
1468
        step should be called after `optimizer.step()` . It will update the learning rate in optimizer according to ``metrics`` .
1469 1470 1471
        The new learning rate will take effect on next epoch.

        Args:
G
guguguzi 已提交
1472
            metrics (Tensor|numpy.ndarray|float): Which will be monitored to determine whether the learning rate will reduce.
1473
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. If it's 'Tensor' or
1474
                'numpy.ndarray', its numel must be 1.
1475 1476 1477 1478
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
G
guguguzi 已提交
1479

1480
        Examples:
1481
            Please refer to the example of current LRScheduler.
1482 1483 1484 1485 1486 1487
        """
        if epoch is None:
            self.last_epoch = self.last_epoch + 1
        else:
            self.last_epoch = epoch

1488
        # loss must be float, numpy.ndarray or 1-D Tensor with numel 1
1489
        if isinstance(metrics, (core.eager.Tensor, numpy.ndarray)):
1490 1491
            assert metrics.size == 1, (
                "the size of metrics must be 1, but the current metrics.size is {}. Maybe that "
1492
                "you should call paddle.mean to process it first.".format(
1493
                    metrics.size
1494 1495 1496 1497 1498
                )
            )
        elif not isinstance(
            metrics, (int, float, numpy.float32, numpy.float64)
        ):
1499
            raise TypeError(
1500
                "metrics must be 'int', 'float', 'np.float64', 'numpy.ndarray' or 'paddle.Tensor', but receive {}".format(
1501 1502 1503
                    type(metrics)
                )
            )
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best is None or self._is_better(metrics, self.best):
                self.best = metrics
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = max(self.last_lr * self.factor, self.min_lr)
                if self.last_lr - new_lr > self.epsilon:
                    self.last_lr = new_lr
                    if self.verbose:
1521 1522 1523 1524 1525 1526 1527
                        print(
                            'Epoch {}: {} set learning rate to {}.'.format(
                                self.last_epoch,
                                self.__class__.__name__,
                                self.last_lr,
                            )
                        )
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold


1543
class CosineAnnealingDecay(LRScheduler):
1544
    r"""
1545

G
guguguzi 已提交
1546 1547
    Set the learning rate using a cosine annealing schedule, where :math:`\eta_{max}` is set to
    the initial learning_rate. :math:`T_{cur}` is the number of epochs since the last restart in
1548
    SGDR.
1549 1550 1551 1552

    The algorithm can be described as following.

    .. math::
1553

1554 1555
        \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
        + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
G
guguguzi 已提交
1556
        & T_{cur} \neq (2k+1)T_{max};
1557 1558 1559 1560

        \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
        \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
        & T_{cur} = (2k+1)T_{max}.
G
guguguzi 已提交
1561 1562

    It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_.
1563
    Note that this only implements the cosine annealing part of SGDR, and not the restarts.
G
guguguzi 已提交
1564

1565 1566
    Args:
        learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number.
1567
        T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. It must be a positive integer.
1568 1569
        eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1570
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1571 1572

    Returns:
1573
        ``CosineAnnealingDecay`` instance to schedule learning rate.
1574 1575

    Examples:
G
guguguzi 已提交
1576

1577
        .. code-block:: python
1578
            :name: code-example1
1579

1580
            # Example1: train on default dynamic graph mode
1581 1582 1583
            import paddle
            import numpy as np

1584
            # train on default dynamic graph mode
1585
            linear = paddle.nn.Linear(10, 10)
1586 1587
            scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1588
            for epoch in range(20):
Z
Zhou Wei 已提交
1589
                for batch_id in range(5):
1590
                    x = paddle.uniform([10, 10])
1591
                    out = linear(x)
C
chentianyu03 已提交
1592
                    loss = paddle.mean(out)
1593
                    loss.backward()
1594 1595
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1596 1597
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1598

1599 1600 1601 1602 1603 1604
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
1605 1606 1607 1608
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1609 1610
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1611 1612
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1613
                scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
1614 1615 1616 1617 1618 1619
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1620
                for batch_id in range(5):
1621 1622 1623 1624 1625 1626
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1627
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1628 1629
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1630 1631
    """

1632 1633 1634
    def __init__(
        self, learning_rate, T_max, eta_min=0, last_epoch=-1, verbose=False
    ):
1635 1636
        if not isinstance(T_max, int):
            raise TypeError(
1637
                "The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received %s."
1638 1639
                % type(T_max)
            )
1640 1641
        if not isinstance(eta_min, (float, int)):
            raise TypeError(
1642
                "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s."
1643 1644
                % type(eta_min)
            )
1645
        assert T_max > 0 and isinstance(
1646 1647
            T_max, int
        ), " 'T_max' must be a positive integer."
1648 1649
        self.T_max = T_max
        self.eta_min = float(eta_min)
1650
        super().__init__(learning_rate, last_epoch, verbose)
1651 1652 1653 1654 1655

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
1656 1657 1658 1659 1660 1661
            return (
                self.last_lr
                + (self.base_lr - self.eta_min)
                * (1 - math.cos(math.pi / self.T_max))
                / 2
            )
1662 1663

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
1664 1665
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)
        ) * (self.last_lr - self.eta_min) + self.eta_min
1666 1667

    def _get_closed_form_lr(self):
1668 1669 1670 1671 1672 1673
        return (
            self.eta_min
            + (self.base_lr - self.eta_min)
            * (1 + math.cos(math.pi * self.last_epoch / self.T_max))
            / 2
        )
G
guguguzi 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726


class MultiplicativeDecay(LRScheduler):
    """
    Multiply the learning rate of ``optimizer`` by the factor given in function ``lr_lambda`` .

    The algorithm can be described as the code below.

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95

        learning_rate = 0.5        # epoch 0,
        learning_rate = 0.475      # epoch 1, 0.5*0.95
        learning_rate = 0.45125    # epoch 2, 0.475*0.95

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the last learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``MultiplicativeDecay`` instance to schedule learning rate.

    Examples:

        .. code-block:: python

            import paddle

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.MultiplicativeDecay(learning_rate=0.5, lr_lambda=lambda x:0.95, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(20):
                for batch_id in range(5):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'MultiplicativeDecay' must be 'function', but received %s."
1727 1728
                % type(lr_lambda)
            )
G
guguguzi 已提交
1729 1730

        self.lr_lambda = lr_lambda
1731
        super().__init__(learning_rate, last_epoch, verbose)
G
guguguzi 已提交
1732 1733

    def get_lr(self):
1734 1735 1736 1737
        cur_lr = self.base_lr
        for epoch in range(1, self.last_epoch + 1):
            cur_lr = cur_lr * self.lr_lambda(epoch)
        return cur_lr
1738 1739 1740 1741


class OneCycleLR(LRScheduler):
    r"""
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    Sets the learning rate according to the one cycle learning rate scheduler.
    The scheduler adjusts the learning rate from an initial learning rate to the maximum learning rate and then
    from that maximum learning rate to the minimum learning rate, which is much less than the initial learning rate.

    It has been proposed in `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates <https://arxiv.org/abs/1708.07120>`_.

    Please note that the default behaviour of this scheduler follows the fastai implementation of one cycle,
    which claims that “unpublished work has shown even better results by using only two phases”.
    If you want the behaviour of this scheduler to be consistent with the paper, please set ``three_phase=True`` .

    Also note that you should update learning rate each step.

    Args:
1756
        max_learning_rate (float): The maximum learning rate. It is a python float number. Functionally, it defines the initial learning rate by ``divide_factor`` .
1757
        total_steps (int): Number of total training steps.
1758
        divide_factor (float, optional): Initial learning rate will be determined by initial_learning_rate = max_learning_rate / divide_factor. Default: 25.
1759 1760
        end_learning_rate (float, optional): The minimum learning rate during training, it should be much less than initial learning rate.
        phase_pct (float): The percentage of total steps which used to increasing learning rate. Default: 0.3.
1761
        anneal_strategy (str, optional): Strategy of adjusting learning rate.'cos' for cosine annealing, 'linear' for linear annealing. Default: 'cos'.
1762
        three_phase (bool, optional): Whether to use three phase.
1763

1764
            If ``True``:
1765

1766 1767 1768
                1. The learning rate will first increase from initial learning rate to maximum learning rate.
                2. Then it will decrease to initial learning rate. Number of step in this phase is the same as the one in first phase.
                3. Finally, it will decrease to minimum learning rate which is much less than initial learning rate.
1769

1770
            If ``False``:
1771

1772 1773
                1. The learning rate will increase to maximum learning rate.
                2. Then it will directly decrease to minimum learning rate.
1774

1775 1776 1777 1778 1779 1780 1781 1782
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``OneCycleLR`` instance to schedule learning rate.

    Examples:
        .. code-block:: python
1783
            :name: code-example1
1784

1785
            # Example1: train on default dynamic graph mode
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

1803 1804 1805 1806 1807 1808
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
1833

1834 1835
    """

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
    def __init__(
        self,
        max_learning_rate,
        total_steps,
        divide_factor=25.0,
        end_learning_rate=0.0001,
        phase_pct=0.3,
        anneal_strategy='cos',
        three_phase=False,
        last_epoch=-1,
        verbose=False,
    ):
1848 1849 1850
        # Check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
1851 1852 1853 1854
                "'max_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(max_learning_rate)
                )
            )
1855 1856 1857 1858 1859 1860
        if max_learning_rate < 0:
            raise ValueError("'max_learning_rate' must be a positive integer.")

        # Check type and value of end_learning_rate
        if not isinstance(end_learning_rate, (float, int)):
            raise TypeError(
1861 1862 1863 1864
                "'end_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(end_learning_rate)
                )
            )
1865 1866 1867 1868 1869
        if end_learning_rate < 0:
            raise ValueError("'end_learning_rate' must be a positive integer.")

        # Check type and value of total_steps
        if not isinstance(total_steps, int):
1870 1871
            raise TypeError(
                "'total_step' must be 'int', but received {}".format(
1872 1873 1874
                    type(total_steps)
                )
            )
1875 1876 1877 1878 1879 1880
        if total_steps <= 0:
            raise ValueError("'total_step' must be a positive integer.")
        self.total_steps = total_steps

        # Check type and value of pac_start
        if not isinstance(phase_pct, float):
1881 1882
            raise TypeError(
                "'phase_pct' must be 'float', but received {}".format(
1883 1884 1885
                    type(phase_pct)
                )
            )
1886 1887 1888
        if phase_pct < 0 or phase_pct > 1:
            raise ValueError(
                "'phase_pct' must be between 0 and 1, but received {}".format(
1889 1890 1891
                    phase_pct
                )
            )
1892 1893 1894 1895

        # Check type and value of divide_factor
        if not isinstance(divide_factor, (float, int)):
            raise TypeError(
1896 1897 1898 1899
                "'divide_factor' must be 'float' or 'int', but received {}".format(
                    type(divide_factor)
                )
            )
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

        initial_lr = max_learning_rate / float(divide_factor)
        min_lr = float(end_learning_rate)

        if three_phase:
            if phase_pct >= 0.5:
                raise ValueError(
                    "When three_phase is True, 'phase_pct' must be less than 0.5"
                )
            # start step and end step of each phase.
            self._step_config = [
                0,
                phase_pct * self.total_steps - 1,
                2 * phase_pct * self.total_steps - 2,
                self.total_steps - 1,
                self.total_steps - 1,  # for the last step.
            ]
            # step size of each phase.
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[3] - self._step_config[2],
1922 1923
                self._step_config[3]
                - self._step_config[2],  # for the last step.
1924 1925 1926
            ]
            # start lr and end lr of each phase.
            self._lr_config = [
1927 1928 1929 1930
                initial_lr,
                max_learning_rate,
                initial_lr,
                min_lr,
1931 1932 1933
            ]
        else:
            self._step_config = [
1934 1935 1936 1937
                0,
                phase_pct * self.total_steps - 1,
                self.total_steps - 1,
                self.total_steps - 1,
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
            ]
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[2] - self._step_config[1],
            ]
            self._lr_config = [initial_lr, max_learning_rate, min_lr]

        # Check anneal_strategy
        if anneal_strategy == 'cos':
            self.anneal_func = self._cos_annealing
        elif anneal_strategy == 'linear':
            self.anneal_func = self._linear_annealing
        else:
            raise ValueError(
1953 1954 1955 1956
                "'anneal_strategy' must by one of 'cos' or 'linear', but received {}".format(
                    anneal_strategy
                )
            )
1957
        super().__init__(initial_lr, last_epoch, verbose)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

    def _cos_annealing(self, start_lr, end_lr, pct):
        cos_out = math.cos(math.pi * pct) + 1
        return end_lr + (start_lr - end_lr) / 2.0 * cos_out

    def _linear_annealing(self, start_lr, end_lr, pct):
        return (end_lr - start_lr) * pct + start_lr

    def get_lr(self):
        current_step = self.last_epoch

        if current_step > self.total_steps:
            raise ValueError(
1971 1972 1973 1974
                "Tried to step {} times. However the number of total steps is {}".format(
                    current_step, self.total_steps
                )
            )
1975

1976
        for i, (end_step, step_size) in enumerate(
1977 1978
            zip(self._step_config[1:], self._steps_size)
        ):
1979 1980 1981 1982
            # i == len(self._lr_config) - 2 catch the last step, otherwise it will return None.
            if current_step <= end_step or i == len(self._lr_config) - 2:
                # self._step_config[i] means start step of a phase.
                percentage = (current_step - self._step_config[i]) / step_size
1983 1984 1985
                return self.anneal_func(
                    self._lr_config[i], self._lr_config[i + 1], percentage
                )
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028


class CyclicLR(LRScheduler):
    r"""
    Set the learning rate according to the cyclic learning rate (CLR) scheduler.
    The scheduler regards the process of learning rate adjustment as one cycle after another.
    It cycles the learning rate between two boundaries with a constant frequency.
    The distance between the two boundaries can be scaled on a per-iteration or per-cycle basis.

    It has been proposed in `Cyclic Learning Rates for Training Neural Networks <https://arxiv.org/abs/1506.01186>`_.

    According to the paper, the cyclic learning rate schedule has three build-in scale methods:

    * "triangular": A basic triangular cycle without any amplitude scaling.
    * "triangular2": A basic triangular cycle that reduce initial amplitude by half each cycle.
    * "exp_range": A cycle that scales initial amplitude by scale function which is defined as :math:`gamma^{iterations}` .

    The initial amplitude is defined as max_learning_rate - base_learning_rate.
    Also note that you should update learning rate each step.

    Args:
        base_learning_rate (float): Initial learning rate, which is the lower boundary in the cycle. The paper recommends
            that set the base_learning_rate to 1/3 or 1/4 of max_learning_rate.
        max_learning_rate (float): Maximum learning rate in the cycle. It defines the cycle amplitude as above.
            Since there is some scaling operation during process of learning rate adjustment,
            max_learning_rate may not actually be reached.
        step_size_up (int): Number of training steps, which is used to increase learning rate in a cycle.
            The step size of one cycle will be defined by step_size_up + step_size_down. According to the paper, step
            size should be set as at least 3 or 4 times steps in one epoch.
        step_size_down (int, optional): Number of training steps, which is used to decrease learning rate in a cycle.
            If not specified, it's value will initialize to `` step_size_up `` . Default: None
        mode (str, optional): one of 'triangular', 'triangular2' or 'exp_range'.
            If scale_fn is specified, this argument will be ignored. Default: 'triangular'
        exp_gamma (float): Constant in 'exp_range' scaling function: exp_gamma**iterations. Used only when mode = 'exp_range'. Default: 1.0
        scale_fn (function, optional): A custom scaling function, which is used to replace three build-in methods.
            It should only have one argument. For all x >= 0, 0 <= scale_fn(x) <= 1.
            If specified, then 'mode' will be ignored. Default: None
        scale_mode (str, optional): One of 'cycle' or 'iterations'. Defines whether scale_fn is evaluated on cycle
            number or cycle iterations (total iterations since start of training). Default: 'cycle'
        last_epoch (int, optional): The index of last epoch. Can be set to restart training.Default: -1, means initial learning rate.
        verbose: (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
2029
        ``CyclicLR`` instance to schedule learning rate.
2030 2031 2032

    Examples:
        .. code-block:: python
2033
            :name: code-example1
2034

2035
            # Example1: train on default dynamic graph mode
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5, max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

2053 2054 2055 2056 2057 2058
        .. code-block:: python
            :name: code-example2

            # Example2: train on static graph mode
            import paddle
            import numpy as np
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                    max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
    """

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
    def __init__(
        self,
        base_learning_rate,
        max_learning_rate,
        step_size_up,
        step_size_down=None,
        mode='triangular',
        exp_gamma=1.0,
        scale_fn=None,
        scale_mode='cycle',
        last_epoch=-1,
        verbose=False,
    ):
2099 2100 2101
        # check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
2102 2103 2104 2105
                "'max_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(max_learning_rate)
                )
            )
2106 2107
        if max_learning_rate < 0:
            raise ValueError(
2108 2109 2110 2111
                "'max_learning_rate' must be a positive integer, but received {}".format(
                    max_learning_rate
                )
            )
2112 2113 2114 2115

        # check type and value of step_size_up
        if not isinstance(step_size_up, int):
            raise TypeError(
2116 2117 2118 2119
                "The type of 'step_size_up' must be int, but received {}".format(
                    type(step_size_up)
                )
            )
2120 2121
        if step_size_up <= 0:
            raise ValueError(
2122 2123 2124 2125
                "'step_size_up' must be a positive integer, but received {}".format(
                    step_size_up
                )
            )
2126 2127 2128 2129 2130

        # check type and value of step_size_down
        if step_size_down is not None:
            if not isinstance(step_size_down, int):
                raise TypeError(
2131 2132 2133 2134
                    "The type of 'step_size_down' must be int, but received {}".format(
                        type(step_size_down)
                    )
                )
2135 2136
            if step_size_down <= 0:
                raise ValueError(
2137 2138 2139 2140
                    "'step_size_down' must be a positive integer, but received {}".format(
                        step_size_down
                    )
                )
2141 2142 2143 2144 2145

        # check type of exp_gamma
        if not isinstance(exp_gamma, float):
            raise TypeError(
                "The type of 'exp_gamma' must be float, but received {}".format(
2146 2147 2148
                    type(exp_gamma)
                )
            )
2149 2150

        step_size_up = float(step_size_up)
2151 2152 2153 2154 2155
        step_size_down = (
            float(step_size_down)
            if step_size_down is not None
            else step_size_up
        )
2156 2157 2158 2159 2160 2161

        self.cycle_size = step_size_up + step_size_down
        self.step_up_pct = step_size_up / self.cycle_size
        self.max_lr = float(max_learning_rate)
        self.amplitude = self.max_lr - base_learning_rate

2162 2163 2164 2165
        if (
            mode not in ['triangular', 'triangular2', 'exp_range']
            and scale_fn is None
        ):
2166 2167 2168 2169 2170
            raise ValueError(
                "'mode' is invalid and 'scale_fn' is not specified, make sure one of 'mode' or 'scale_fn' is valid"
            )
        if scale_mode not in ['cycle', 'iterations']:
            raise ValueError(
2171 2172
                "'scale_mode' must be one of 'cycle' or 'iterations"
            )
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

        self.mode = mode
        self.gamma = exp_gamma  # only for exp_range mode

        if scale_fn is None:
            if self.mode == 'triangular':
                self.scale_fn = self._triangular_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'triangular2':
                self.scale_fn = self._triangular2_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'exp_range':
                self.scale_fn = self._exp_range_scale_fn
                self.scale_mode = 'iterations'
        else:
            self.scale_fn = scale_fn
            self.scale_mode = scale_mode
        super().__init__(base_learning_rate, last_epoch, verbose)

    def _triangular_scale_fn(self, x):
2193
        return 1.0
2194 2195

    def _triangular2_scale_fn(self, x):
2196
        return 1 / (2.0 ** (x - 1))
2197 2198 2199 2200 2201 2202 2203 2204

    def _exp_range_scale_fn(self, x):
        return self.gamma**x

    def get_lr(self):
        iterations = self.last_epoch

        cycle = 1 + iterations // self.cycle_size
2205
        pct_per_cycle = 1.0 + iterations / self.cycle_size - cycle
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

        if pct_per_cycle <= self.step_up_pct:
            scale_factor = pct_per_cycle / self.step_up_pct
        else:
            scale_factor = (1 - pct_per_cycle) / (1 - self.step_up_pct)

        base_height = self.amplitude * scale_factor

        lr = self.base_lr + base_height * self.scale_fn(eval(self.scale_mode))

        return lr