lr.py 83.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings
17 18 19 20

import numpy

from paddle import Tensor
21
from paddle.fluid import core
22

G
guguguzi 已提交
23
__all__ = [  # noqa
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    'LRScheduler',
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'LinearWarmup',
    'ExponentialDecay',
    'MultiStepDecay',
    'StepDecay',
    'LambdaDecay',
    'ReduceOnPlateau',
    'CosineAnnealingDecay',
    'MultiplicativeDecay',
    'OneCycleLR',
    'CyclicLR',
40 41 42
]


43
class LRScheduler:
44 45 46 47
    """

    LRScheduler Base class. Define the common interface of a learning rate scheduler.

Z
Zhou Wei 已提交
48
    User can import it by ``from paddle.optimizer.lr import LRScheduler`` ,
49 50 51 52 53 54 55 56 57 58 59 60 61 62

    then overload it for your subclass and have a custom implementation of ``get_lr()`` .

    Otherwise, an ``NotImplementedError`` exception will be thrown.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        instance to schedule learning rate.

    Examples:
63
        Here is an example of a simple ``StepDecay`` implementation.
G
guguguzi 已提交
64

65
        .. code-block:: python
G
guguguzi 已提交
66

67
            import paddle
Z
Zhou Wei 已提交
68
            from paddle.optimizer.lr import LRScheduler
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

            class StepDecay(LRScheduler):
                def __init__(self,
                            learning_rate,
                            step_size,
                            gamma=0.1,
                            last_epoch=-1,
                            verbose=False):
                    if not isinstance(step_size, int):
                        raise TypeError(
                            "The type of 'step_size' must be 'int', but received %s." %
                            type(step_size))
                    if gamma >= 1.0:
                        raise ValueError('gamma should be < 1.0.')

                    self.step_size = step_size
                    self.gamma = gamma
86
                    super().__init__(learning_rate, last_epoch, verbose)
87 88 89 90

                def get_lr(self):
                    i = self.last_epoch // self.step_size
                    return self.base_lr * (self.gamma**i)
91 92 93 94 95 96

    """

    def __init__(self, learning_rate=0.1, last_epoch=-1, verbose=False):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
97 98 99 100
                "The type of learning rate must be float, but received {}".format(
                    type(learning_rate)
                )
            )
101 102 103 104 105 106 107 108 109
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = last_epoch
        self.verbose = verbose
        self._var_name = None

        self.step()

    def __call__(self):
G
guguguzi 已提交
110
        """
S
Shuangchi He 已提交
111
        Return latest computed learning rate on current epoch.
112 113 114 115 116
        """
        return self.last_lr

    def step(self, epoch=None):
        """
117

G
guguguzi 已提交
118
        ``step`` should be called after ``optimizer.step`` . It will update the learning rate in optimizer according to current ``epoch`` .
119
        The new learning rate will take effect on next ``optimizer.step`` .
120 121 122 123 124 125

        Args:
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
126

127 128 129 130 131 132 133 134 135 136 137 138
        """
        if epoch is None:
            self.last_epoch += 1
            self.last_lr = self.get_lr()
        else:
            self.last_epoch = epoch
            if hasattr(self, "_get_closed_form_lr"):
                self.last_lr = self._get_closed_form_lr()
            else:
                self.last_lr = self.get_lr()

        if self.verbose:
139 140 141 142 143
            print(
                'Epoch {}: {} set learning rate to {}.'.format(
                    self.last_epoch, self.__class__.__name__, self.last_lr
                )
            )
144 145 146

    def state_dict(self):
        """
147

148 149
        Returns the state of the scheduler as a :class:`dict`.

150
        It is a subset of ``self.__dict__`` .
151
        """
152
        self.state_keys()
153 154 155 156 157 158
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Tensor):
159 160 161 162
                assert (
                    value.size == 1
                ), "numel of Tensor in state_dict must be 1"
                value = float(value)
163 164 165 166
            state_dict[key] = value

        return state_dict

167
    # For those subclass who overload LRScheduler, "last_epoch, last_lr" will be saved by default.
168
    # (Note): you can change it for your subclass.
169
    def state_keys(self):
170
        """
171 172 173 174 175 176 177

        For those subclass who overload ``LRScheduler`` (Base Class). Acquiescently, "last_epoch, last_lr" will be saved by ``self.keys = ['last_epoch', 'last_lr']`` .

        ``last_epoch`` is the current epoch num, and ``last_lr`` is the current learning rate.

        If you want to change the default behavior, you should have a custom implementation of ``_state_keys()`` to redefine ``self.keys`` .

178 179 180
        """
        self.keys = ['last_epoch', 'last_lr']

181
    def set_state_dict(self, state_dict):
182
        """
183

184 185
        Loads the schedulers state.
        """
186
        self.state_keys()
187 188 189 190 191
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
192 193 194 195
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
196 197 198 199 200
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

201 202
    # alias for set_state_dict
    set_dict = set_state_dict
203 204

    def get_lr(self):
205
        """
G
guguguzi 已提交
206

207 208 209 210
        For those subclass who overload ``LRScheduler`` (Base Class), User should have a custom implementation of ``get_lr()`` .

        Otherwise, an ``NotImplementedError`` exception will be thrown.
        """
211 212 213 214
        # calculate by python float
        raise NotImplementedError


215
class NoamDecay(LRScheduler):
216
    r"""
217

G
guguguzi 已提交
218
    Applies Noam Decay to the initial learning rate.
219 220 221 222 223 224 225

    The algorithm can be described as following.

    .. math::

        new\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(epoch^{-0.5}, epoch * warmup\_steps^{-1.5})

G
guguguzi 已提交
226
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
227 228 229 230 231 232 233


    Args:
        d$_{model}$(int): The dimensionality of input and output feature vector of model. It is a python int number.
        warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number
        learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
234
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
235 236

    Returns:
237
        ``NoamDecay`` instance to schedule learning rate.
238 239 240 241 242 243 244

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

245
            # train on default dynamic graph mode
246
            linear = paddle.nn.Linear(10, 10)
247 248
            scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
249
            for epoch in range(20):
Z
Zhou Wei 已提交
250
                for batch_id in range(5):
251
                    x = paddle.uniform([10, 10])
252
                    out = linear(x)
C
chentianyu03 已提交
253
                    loss = paddle.mean(out)
254
                    loss.backward()
255 256
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
257 258
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
259

260
            # train on static graph mode
261 262 263 264
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
265 266
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
267 268
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
269
                scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
270 271 272 273 274 275
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
276
                for batch_id in range(5):
277 278 279 280 281 282
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
283
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
284 285
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
286 287 288

    """

289 290 291 292 293 294 295 296
    def __init__(
        self,
        d_model,
        warmup_steps,
        learning_rate=1.0,
        last_epoch=-1,
        verbose=False,
    ):
297 298 299
        if d_model <= 0:
            raise ValueError("d_model should be grater than 0")

300 301
        self.d_model = d_model
        self.warmup_steps = warmup_steps
302
        super().__init__(learning_rate, last_epoch, verbose)
303 304 305 306 307 308 309 310 311 312

    def get_lr(self):
        if self.last_epoch == 0:
            a = 1
        else:
            a = self.last_epoch**-0.5
        b = self.warmup_steps**-1.5 * self.last_epoch
        return self.base_lr * (self.d_model**-0.5) * min(a, b)


313
class PiecewiseDecay(LRScheduler):
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    """

    Piecewise learning rate scheduler.

    The algorithm can be described as the code below:

    .. code-block:: text

        boundaries = [100, 200]
        values = [1.0, 0.5, 0.1]
        if epoch < 100:
            learning_rate = 1.0
        elif 100 <= global_step < 200:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Args:
G
guguguzi 已提交
332 333
        boundaries(list|tuple): A list/tuple of steps numbers. The type of element in the list is python int.
        values(list|tuple): A list/tuple of learning rate values that will be picked during different epoch boundaries.
334
            The type of element in the list is python float. The ``values`` have one more element than ``boundaries``.
335
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
336
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
337 338

    Returns:
339
        ``PiecewiseDecay`` instance to schedule learning rate.
340 341

    Examples:
G
guguguzi 已提交
342

343 344 345 346 347
        .. code-block:: python

            import paddle
            import numpy as np

348
            # train on default dynamic graph mode
349
            linear = paddle.nn.Linear(10, 10)
350 351
            scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
352
            for epoch in range(20):
Z
Zhou Wei 已提交
353
                for batch_id in range(5):
354
                    x = paddle.uniform([10, 10])
355
                    out = linear(x)
C
chentianyu03 已提交
356
                    loss = paddle.mean(out)
357
                    loss.backward()
358 359
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
360 361
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
362

363
            # train on static graph mode
364 365 366 367
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
368 369
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
370 371
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
372
                scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
373 374 375 376 377 378
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
379
                for batch_id in range(5):
380 381 382 383 384 385
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
386
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
387 388
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
389 390 391
    """

    def __init__(self, boundaries, values, last_epoch=-1, verbose=False):
392 393 394 395 396 397 398 399
        if len(boundaries) == 0:
            raise ValueError('The boundaries cannot be empty.')

        if len(values) <= len(boundaries):
            raise ValueError(
                f'The values have one more element than boundaries, but received len(values) [{len(values)}] < len(boundaries) + 1 [{len(boundaries) + 1}].'
            )

400 401
        self.boundaries = boundaries
        self.values = values
402
        super().__init__(last_epoch=last_epoch, verbose=verbose)
403 404 405 406 407 408 409 410

    def get_lr(self):
        for i in range(len(self.boundaries)):
            if self.last_epoch < self.boundaries[i]:
                return self.values[i]
        return self.values[len(self.values) - 1]


411
class NaturalExpDecay(LRScheduler):
412
    r"""
413 414

    Applies natural exponential decay to the initial learning rate.
G
guguguzi 已提交
415

416 417 418 419
    The algorithm can be described as following:

    .. math::

420
        new\_learning\_rate = learning\_rate * e^{- gamma * epoch}
421 422 423

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
424
        gamma (float, optional): A Ratio to update the learning rate, should greater than 0.0 to make learning rate decay. Default: 0.1.
425
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
426
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
427 428

    Returns:
429
        ``NaturalExpDecay`` instance to schedule learning rate.
430 431

    Examples:
G
guguguzi 已提交
432

433 434 435 436 437
        .. code-block:: python

            import paddle
            import numpy as np

438
            # train on default dynamic graph mode
439
            linear = paddle.nn.Linear(10, 10)
440 441
            scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
442
            for epoch in range(20):
Z
Zhou Wei 已提交
443
                for batch_id in range(5):
444
                    x = paddle.uniform([10, 10])
445
                    out = linear(x)
C
chentianyu03 已提交
446
                    loss = paddle.mean(out)
447
                    loss.backward()
448 449
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
450 451
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
452

453
            # train on static graph mode
454 455 456 457
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
458 459
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
460 461
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
462
                scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
463 464 465 466 467 468
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
469
                for batch_id in range(5):
470 471 472 473 474 475
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
476
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
477 478
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
479 480 481
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
482 483 484
        assert (
            gamma > 0.0
        ), " 'gamma' must be a positive number so that the learning rate will decay."
485
        self.gamma = gamma
486
        super().__init__(learning_rate, last_epoch, verbose)
487 488 489 490 491

    def get_lr(self):
        return self.base_lr * math.exp(-1 * self.gamma * self.last_epoch)


492
class InverseTimeDecay(LRScheduler):
493
    r"""
494 495 496 497 498 499 500

    Applies inverse time decay to the initial learning rate.

    The algorithm can be described as following:

    .. math::

501
        new\_learning\_rate = \frac{learning\_rate}{1 + gamma * epoch}
502 503 504

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
505
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
506 507
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
508
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
509 510

    Returns:
511
        ``InverseTimeDecay`` instance to schedule learning rate.
512 513

    Examples:
G
guguguzi 已提交
514

515 516 517 518 519
        .. code-block:: python

            import paddle
            import numpy as np

520
            # train on default dynamic graph mode
521
            linear = paddle.nn.Linear(10, 10)
522 523
            scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
524
            for epoch in range(20):
Z
Zhou Wei 已提交
525
                for batch_id in range(5):
526
                    x = paddle.uniform([10, 10])
527
                    out = linear(x)
C
chentianyu03 已提交
528
                    loss = paddle.mean(out)
529
                    loss.backward()
530 531
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
532 533
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
534

535
            # train on static graph mode
536 537 538 539
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
540 541
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
542 543
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
544
                scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
545 546 547 548 549 550
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
551
                for batch_id in range(5):
552 553 554 555 556 557
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
558
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
559 560
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
561 562 563 564 565

    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
566
        super().__init__(learning_rate, last_epoch, verbose)
567 568 569 570 571

    def get_lr(self):
        return self.base_lr / (1 + self.gamma * self.last_epoch)


572
class PolynomialDecay(LRScheduler):
573
    r"""
574 575 576 577 578 579 580 581 582

    Applies polynomial decay to the initial learning rate.

    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

G
guguguzi 已提交
583
        decay\_steps & = decay\_steps * math.ceil(\frac{epoch}{decay\_steps})
584

585
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
586 587 588 589 590

    If cycle is set to False, then:

    .. math::

G
guguguzi 已提交
591
        epoch & = min(epoch, decay\_steps)
592

593
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
594 595 596 597


    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
598
        decay_steps(int): The decay step size. It determines the decay cycle. It must be a positive integer.
599
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
600
        power(float, optional): Power of polynomial, should greater than 0.0 to get learning rate decay. Default: 1.0.
G
guguguzi 已提交
601
        cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease
602 603
            to ``end_lr`` .  If False, the learning rate is monotone decreasing. Default: False.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
604
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
605 606

    Returns:
607
        ``PolynomialDecay`` instance to schedule learning rate.
608 609

    Examples:
G
guguguzi 已提交
610

611 612 613 614 615
        .. code-block:: python

            import paddle
            import numpy as np

616
            # train on default dynamic graph mode
617
            linear = paddle.nn.Linear(10, 10)
618 619
            scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
620
            for epoch in range(20):
Z
Zhou Wei 已提交
621
                for batch_id in range(5):
622
                    x = paddle.uniform([10, 10])
623
                    out = linear(x)
C
chentianyu03 已提交
624
                    loss = paddle.mean(out)
625
                    loss.backward()
626 627
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
628 629
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
630

631
            # train on static graph mode
632 633 634 635
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
636 637
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
638 639
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
640
                scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
641 642 643 644 645 646
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
647
                for batch_id in range(5):
648 649 650 651 652 653
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
654
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
655 656
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
657 658
    """

659 660 661 662 663 664 665 666 667 668
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_lr=0.0001,
        power=1.0,
        cycle=False,
        last_epoch=-1,
        verbose=False,
    ):
669
        assert decay_steps > 0 and isinstance(
670 671
            decay_steps, int
        ), " 'decay_steps' must be a positive integer."
672 673
        self.decay_steps = decay_steps
        self.end_lr = end_lr
674 675 676
        assert (
            power > 0.0
        ), " 'power' must be greater than 0.0 so that the learning rate will decay."
677 678
        self.power = power
        self.cycle = cycle
679
        super().__init__(learning_rate, last_epoch, verbose)
680 681 682 683 684 685

    def get_lr(self):
        tmp_epoch_num = self.last_epoch
        tmp_decay_steps = self.decay_steps
        if self.cycle:
            div_res = math.ceil(
686 687
                float(self.last_epoch) / float(self.decay_steps)
            )
688 689 690 691 692 693 694 695

            if self.last_epoch == 0:
                div_res = 1
            tmp_decay_steps = self.decay_steps * div_res
        else:
            tmp_epoch_num = min(self.last_epoch, self.decay_steps)

        return (self.base_lr - self.end_lr) * (
696 697
            (1 - float(tmp_epoch_num) / float(tmp_decay_steps)) ** self.power
        ) + self.end_lr
698 699


700
class LinearWarmup(LRScheduler):
701
    r"""
702 703 704

    Linear learning rate warm up strategy. Update the learning rate preliminarily before the normal learning rate scheduler.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
G
guguguzi 已提交
705

706
    When epoch < warmup_steps, learning rate is updated as:
G
guguguzi 已提交
707

708
    .. math::
G
guguguzi 已提交
709

710
            lr = start\_lr + (end\_lr - start\_lr) * \frac{epoch}{warmup\_steps}
G
guguguzi 已提交
711

712
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
G
guguguzi 已提交
713

714
    When epoch >= warmup_steps, learning rate is updated as:
G
guguguzi 已提交
715

716
    .. math::
G
guguguzi 已提交
717

718
            lr = learning_rate
G
guguguzi 已提交
719

720
    where ``learning_rate`` is float or any subclass of ``LRScheduler`` .
721 722

    Args:
723
        learning_rate (float|LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``LRScheduler`` .
724
        warmup_steps (int): total steps of warm up. It must be a positive integer.
725 726 727
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
728
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
729 730

    Returns:
731
        ``LinearWarmup`` instance to schedule learning rate.
732 733

    Examples:
G
guguguzi 已提交
734

735 736 737 738 739
        .. code-block:: python

            import paddle
            import numpy as np

740
            # train on default dynamic graph mode
741
            linear = paddle.nn.Linear(10, 10)
742
            scheduler = paddle.optimizer.lr.LinearWarmup(
743
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
744
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
745
            for epoch in range(20):
Z
Zhou Wei 已提交
746
                for batch_id in range(5):
747
                    x = paddle.uniform([10, 10])
748
                    out = linear(x)
C
chentianyu03 已提交
749
                    loss = paddle.mean(out)
750
                    loss.backward()
751 752
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
753 754
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
755

756
            # train on static graph mode
757 758 759 760
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
761 762
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
763 764
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
765
                scheduler = paddle.optimizer.lr.LinearWarmup(
766 767 768 769 770 771 772
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
773
                for batch_id in range(5):
774 775 776 777 778 779
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
780
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
781 782
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
783 784
    """

785 786 787 788 789 790 791 792 793
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        last_epoch=-1,
        verbose=False,
    ):
794
        type_check = isinstance(learning_rate, (float, int, LRScheduler))
795 796
        if not type_check:
            raise TypeError(
797 798 799 800
                "the type of learning_rate should be [int, float or LRScheduler], the current type is {}".format(
                    learning_rate
                )
            )
801
        self.learning_rate = learning_rate
802
        assert warmup_steps > 0 and isinstance(
803 804
            warmup_steps, int
        ), " 'warmup_steps' must be a positive integer."
805 806 807
        self.warmup_steps = warmup_steps
        self.start_lr = start_lr
        self.end_lr = end_lr
808 809
        assert (
            end_lr > start_lr
810
        ), f"end_lr {end_lr} must be greater than start_lr {start_lr}"
811
        super().__init__(start_lr, last_epoch, verbose)
812

813 814 815 816 817 818
    def state_dict(self):
        """
        Returns the state of the LinearWarmup scheduler as a :class:`dict`.

        It is a subset of ``self.__dict__`` .
        """
819
        state_dict = super().state_dict()
820 821 822 823 824 825 826 827
        if isinstance(self.learning_rate, LRScheduler):
            state_dict["LinearWarmup_LR"] = self.learning_rate.state_dict()
        return state_dict

    def set_state_dict(self, state_dict):
        """
        Loads state_dict for LinearWarmup scheduler.
        """
828
        super().set_state_dict(state_dict)
829 830 831
        if isinstance(self.learning_rate, LRScheduler):
            self.learning_rate.set_state_dict(state_dict["LinearWarmup_LR"])

832 833 834
    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            return (self.end_lr - self.start_lr) * float(
835 836
                self.last_epoch
            ) / float(self.warmup_steps) + self.start_lr
837
        else:
838
            if isinstance(self.learning_rate, LRScheduler):
839 840
                self.learning_rate.step(self.last_epoch - self.warmup_steps)
                return self.learning_rate()
841 842 843 844

            return self.learning_rate


845
class ExponentialDecay(LRScheduler):
846
    r"""
847

848
    Update learning rate by `gamma` each epoch.
849 850

    The algorithm can be described as following.
G
guguguzi 已提交
851

852 853 854 855 856 857
    .. math::

        new\_learning\_rate = last\_learning\_rate * gamma

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
858
        gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
859
            It should be in interval (0.0, 1.0).
860
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
861
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
862 863

    Returns:
864
        ``ExponentialDecay`` instance to schedule learning rate.
865 866

    Examples:
G
guguguzi 已提交
867

868 869 870 871 872
        .. code-block:: python

            import paddle
            import numpy as np

873
            # train on default dynamic graph mode
874
            linear = paddle.nn.Linear(10, 10)
875 876
            scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
877
            for epoch in range(20):
Z
Zhou Wei 已提交
878
                for batch_id in range(5):
879
                    x = paddle.uniform([10, 10])
880
                    out = linear(x)
C
chentianyu03 已提交
881
                    loss = paddle.mean(out)
882
                    loss.backward()
883 884
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
885 886
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
887

888
            # train on static graph mode
889 890 891 892
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
893 894
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
895 896
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
897
                scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
898 899 900 901 902 903
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
904
                for batch_id in range(5):
905 906 907 908 909 910
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
911
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
912 913
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
914 915 916
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
917 918 919
        assert (
            gamma > 0.0 and gamma < 1.0
        ), " 'gamma' must be in interval (0.0, 1.0) so that the learning rate will decay."
920
        self.gamma = gamma
921
        super().__init__(learning_rate, last_epoch, verbose)
922 923 924 925 926

    def get_lr(self):
        return self.base_lr * (self.gamma**self.last_epoch)


927
class MultiStepDecay(LRScheduler):
928
    """
929
    Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
930

G
guguguzi 已提交
931
    The algorithm can be described as the code below.
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        gamma = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
G
guguguzi 已提交
948
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
949 950
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
951
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
952

953 954

    Returns:
955
        ``MultiStepDecay`` instance to schedule learning rate.
956 957

    Examples:
G
guguguzi 已提交
958

959 960 961 962 963
        .. code-block:: python

            import paddle
            import numpy as np

964
            # train on default dynamic graph mode
965
            linear = paddle.nn.Linear(10, 10)
966 967
            scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
968
            for epoch in range(20):
Z
Zhou Wei 已提交
969
                for batch_id in range(5):
970
                    x = paddle.uniform([10, 10])
971
                    out = linear(x)
C
chentianyu03 已提交
972
                    loss = paddle.mean(out)
973
                    loss.backward()
974 975
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
976 977
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
978

979
            # train on static graph mode
980 981 982 983
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
984 985
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
986 987
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
988
                scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
989 990 991 992 993 994
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
995
                for batch_id in range(5):
996 997 998 999 1000 1001
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1002
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1003 1004
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1005 1006
    """

1007 1008 1009
    def __init__(
        self, learning_rate, milestones, gamma=0.1, last_epoch=-1, verbose=False
    ):
1010 1011 1012
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1013 1014
                % type(milestones)
            )
1015

1016
        if not all(
1017 1018
            milestones[i] < milestones[i + 1]
            for i in range(len(milestones) - 1)
1019
        ):
1020 1021 1022 1023 1024 1025
            raise ValueError('The elements of milestones must be incremented')
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

        self.milestones = milestones
        self.gamma = gamma
1026
        super().__init__(learning_rate, last_epoch, verbose)
1027 1028 1029 1030 1031

    def get_lr(self):
        for i in range(len(self.milestones)):
            if self.last_epoch < self.milestones[i]:
                return self.base_lr * (self.gamma**i)
1032
        return self.base_lr * (self.gamma ** len(self.milestones))
1033 1034


1035
class StepDecay(LRScheduler):
1036 1037 1038
    """
    Update the learning rate of ``optimizer`` by ``gamma`` every ``step_size`` number of epoch.

G
guguguzi 已提交
1039
    The algorithm can be described as the code below.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        gamma = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
1054
        step_size (int): the interval to update. It must be a positive integer.
G
guguguzi 已提交
1055
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
1056 1057
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1058
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1059 1060

    Returns:
1061
        ``StepDecay`` instance to schedule learning rate.
1062 1063 1064


    Examples:
G
guguguzi 已提交
1065

1066 1067 1068 1069 1070
        .. code-block:: python

            import paddle
            import numpy as np

1071
            # train on default dynamic graph mode
1072
            linear = paddle.nn.Linear(10, 10)
1073 1074
            scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1075
            for epoch in range(20):
Z
Zhou Wei 已提交
1076
                for batch_id in range(5):
1077
                    x = paddle.uniform([10, 10])
1078
                    out = linear(x)
C
chentianyu03 已提交
1079
                    loss = paddle.mean(out)
1080
                    loss.backward()
1081 1082
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1083 1084
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1085

1086
            # train on static graph mode
1087 1088 1089 1090
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1091 1092
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1093 1094
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1095
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
1096 1097 1098 1099 1100 1101
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1102
                for batch_id in range(5):
1103 1104 1105 1106 1107 1108
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1109
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1110 1111
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1112 1113
    """

1114 1115 1116
    def __init__(
        self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False
    ):
1117 1118
        if not isinstance(step_size, int):
            raise TypeError(
1119 1120 1121
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1122 1123 1124
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

1125
        assert step_size > 0 and isinstance(
1126 1127
            step_size, int
        ), " 'step_size' must be a positive integer."
1128 1129
        self.step_size = step_size
        self.gamma = gamma
1130
        super().__init__(learning_rate, last_epoch, verbose)
1131 1132 1133 1134 1135 1136

    def get_lr(self):
        i = self.last_epoch // self.step_size
        return self.base_lr * (self.gamma**i)


1137
class LambdaDecay(LRScheduler):
1138
    """
C
co63oc 已提交
1139
    Sets the learning rate of ``optimizer`` by function ``lr_lambda`` . ``lr_lambda`` is function which receives ``epoch`` .
1140

G
guguguzi 已提交
1141
    The algorithm can be described as the code below.
1142 1143 1144 1145 1146 1147

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

1148 1149 1150
        learning_rate = 0.5        # epoch 0, 0.5*0.95**0
        learning_rate = 0.475      # epoch 1, 0.5*0.95**1
        learning_rate = 0.45125    # epoch 2, 0.5*0.95**2
1151 1152 1153 1154 1155

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1156
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
1157

1158
    Returns:
1159
        ``LambdaDecay`` instance to schedule learning rate.
1160 1161

    Examples:
G
guguguzi 已提交
1162

1163 1164 1165 1166 1167
        .. code-block:: python

            import paddle
            import numpy as np

1168
            # train on default dynamic graph mode
1169
            linear = paddle.nn.Linear(10, 10)
1170 1171
            scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1172
            for epoch in range(20):
Z
Zhou Wei 已提交
1173
                for batch_id in range(5):
1174
                    x = paddle.uniform([10, 10])
1175
                    out = linear(x)
C
chentianyu03 已提交
1176
                    loss = paddle.mean(out)
1177
                    loss.backward()
1178 1179
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1180 1181
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1182

1183
            # train on static graph mode
1184 1185 1186 1187
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1188 1189
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1190 1191
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1192
                scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
1193 1194 1195 1196 1197 1198
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1199
                for batch_id in range(5):
1200 1201 1202 1203 1204 1205
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1206
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1207 1208
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1209 1210 1211 1212 1213 1214

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
1215
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1216 1217
                % type(lr_lambda)
            )
1218 1219

        self.lr_lambda = lr_lambda
1220
        super().__init__(learning_rate, last_epoch, verbose)
1221 1222 1223 1224 1225

    def get_lr(self):
        return self.base_lr * self.lr_lambda(self.last_epoch)


1226
class ReduceOnPlateau(LRScheduler):
1227
    """
G
guguguzi 已提交
1228
    Reduce learning rate when ``metrics`` has stopped descending. Models often benefit from reducing the learning rate
1229 1230
    by 2 to 10 times once model performance has no longer improvement.

1231
    The ``metrics`` is the one which has been pass into ``step`` , it's shape must [] or [1]. When ``metrics``
G
guguguzi 已提交
1232 1233
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * factor`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``metrics`` stop ascending for a ``patience``
1234 1235 1236 1237 1238 1239
    number of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming above operation.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
1240 1241
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
1242
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
G
guguguzi 已提交
1243
        factor (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * factor`` .
1244
            It should be less than 1.0. Default: 0.1.
G
guguguzi 已提交
1245
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
1246
            Default: 10.
G
guguguzi 已提交
1247
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
1248 1249
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
G
guguguzi 已提交
1250
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
1251 1252 1253
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
G
guguguzi 已提交
1254
        epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon,
1255
            the update is ignored. Default: 1e-8.
1256 1257
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.

G
guguguzi 已提交
1258

1259
    Returns:
1260
        ``ReduceOnPlateau`` instance to schedule learning rate.
1261 1262 1263 1264 1265 1266 1267 1268


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1269
            # train on default dynamic graph mode
1270
            linear = paddle.nn.Linear(10, 10)
1271 1272
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1273
            for epoch in range(20):
Z
Zhou Wei 已提交
1274
                for batch_id in range(5):
1275
                    x = paddle.uniform([10, 10])
1276
                    out = linear(x)
C
chentianyu03 已提交
1277
                    loss = paddle.mean(out)
1278
                    loss.backward()
1279 1280
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1281 1282
                    scheduler.step(loss)    # If you update learning rate each step
              # scheduler.step(loss)        # If you update learning rate each epoch
1283

1284
            # train on static graph mode
1285 1286 1287 1288
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1289 1290
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1291 1292
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1293
                scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
1294 1295 1296 1297 1298 1299
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1300
                for batch_id in range(5):
1301 1302 1303 1304 1305 1306
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1307
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1308 1309
                    scheduler.step(out[0])    # If you update learning rate each step
              # scheduler.step(out[0])        # If you update learning rate each epoch
1310 1311 1312

    """

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    def __init__(
        self,
        learning_rate,
        mode='min',
        factor=0.1,
        patience=10,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        epsilon=1e-8,
        verbose=False,
    ):
1326 1327 1328 1329 1330 1331 1332
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode: ' + mode + ' is unknown!')
        self.mode = mode

        if factor >= 1.0:
            raise ValueError(
1333 1334
                'new_lr = origin_lr * gamma and gamma should be < 1.0.'
            )
1335 1336 1337 1338
        self.factor = factor

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
1339 1340 1341
            raise ValueError(
                'threshold mode: ' + threshold_mode + ' is unknown!'
            )
1342 1343 1344
        self.threshold_mode = threshold_mode
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
1345
                "The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s."
1346 1347
                % type(learning_rate)
            )
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = min_lr
        self.epsilon = epsilon

        self.cooldown_counter = 0
        self.best = None
        self.num_bad_epochs = 0

        # Can not call Parent __init__, so implement here.
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = 0
        self.verbose = verbose
        self._var_name = None

    # "cooldown_counter / best / num_bad_epochs / last_epoch / last_lr" will be stored.
1368
    def state_keys(self):
1369
        self.keys = [
1370 1371 1372 1373 1374
            'cooldown_counter',
            'best',
            'num_bad_epochs',
            'last_epoch',
            'last_lr',
1375 1376 1377 1378
        ]

    def step(self, metrics, epoch=None):
        """
G
guguguzi 已提交
1379
        step should be called after `optimizer.step()` . It will update the learning rate in optimizer according to ``metrics`` .
1380 1381 1382
        The new learning rate will take effect on next epoch.

        Args:
G
guguguzi 已提交
1383
            metrics (Tensor|numpy.ndarray|float): Which will be monitored to determine whether the learning rate will reduce.
1384
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. If it's 'Tensor' or
1385
                'numpy.ndarray', its numel must be 1.
1386 1387 1388 1389
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
G
guguguzi 已提交
1390

1391
        Examples:
1392
            Please refer to the example of current LRScheduler.
1393 1394 1395 1396 1397 1398
        """
        if epoch is None:
            self.last_epoch = self.last_epoch + 1
        else:
            self.last_epoch = epoch

1399
        # loss must be float, numpy.ndarray or 1-D Tensor with numel 1
1400
        if isinstance(metrics, (core.eager.Tensor, numpy.ndarray)):
1401 1402
            assert metrics.size == 1, (
                "the size of metrics must be 1, but the current metrics.size is {}. Maybe that "
1403
                "you should call paddle.mean to process it first.".format(
1404
                    metrics.size
1405 1406 1407 1408 1409
                )
            )
        elif not isinstance(
            metrics, (int, float, numpy.float32, numpy.float64)
        ):
1410
            raise TypeError(
1411
                "metrics must be 'int', 'float', 'np.float64', 'numpy.ndarray' or 'paddle.Tensor', but receive {}".format(
1412 1413 1414
                    type(metrics)
                )
            )
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best is None or self._is_better(metrics, self.best):
                self.best = metrics
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = max(self.last_lr * self.factor, self.min_lr)
                if self.last_lr - new_lr > self.epsilon:
                    self.last_lr = new_lr
                    if self.verbose:
1432 1433 1434 1435 1436 1437 1438
                        print(
                            'Epoch {}: {} set learning rate to {}.'.format(
                                self.last_epoch,
                                self.__class__.__name__,
                                self.last_lr,
                            )
                        )
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold


1454
class CosineAnnealingDecay(LRScheduler):
1455
    r"""
1456

G
guguguzi 已提交
1457 1458
    Set the learning rate using a cosine annealing schedule, where :math:`\eta_{max}` is set to
    the initial learning_rate. :math:`T_{cur}` is the number of epochs since the last restart in
1459
    SGDR.
1460 1461 1462 1463

    The algorithm can be described as following.

    .. math::
1464

1465 1466
        \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
        + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
G
guguguzi 已提交
1467
        & T_{cur} \neq (2k+1)T_{max};
1468 1469 1470 1471

        \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
        \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
        & T_{cur} = (2k+1)T_{max}.
G
guguguzi 已提交
1472 1473

    It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_.
1474
    Note that this only implements the cosine annealing part of SGDR, and not the restarts.
G
guguguzi 已提交
1475

1476 1477
    Args:
        learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number.
1478
        T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. It must be a positive integer.
1479 1480
        eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1481
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1482 1483

    Returns:
1484
        ``CosineAnnealingDecay`` instance to schedule learning rate.
1485 1486

    Examples:
G
guguguzi 已提交
1487

1488 1489 1490 1491 1492
        .. code-block:: python

            import paddle
            import numpy as np

1493
            # train on default dynamic graph mode
1494
            linear = paddle.nn.Linear(10, 10)
1495 1496
            scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1497
            for epoch in range(20):
Z
Zhou Wei 已提交
1498
                for batch_id in range(5):
1499
                    x = paddle.uniform([10, 10])
1500
                    out = linear(x)
C
chentianyu03 已提交
1501
                    loss = paddle.mean(out)
1502
                    loss.backward()
1503 1504
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1505 1506
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1507

1508
            # train on static graph mode
1509 1510 1511 1512
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1513 1514
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1515 1516
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1517
                scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
1518 1519 1520 1521 1522 1523
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1524
                for batch_id in range(5):
1525 1526 1527 1528 1529 1530
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1531
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1532 1533
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1534 1535
    """

1536 1537 1538
    def __init__(
        self, learning_rate, T_max, eta_min=0, last_epoch=-1, verbose=False
    ):
1539 1540
        if not isinstance(T_max, int):
            raise TypeError(
1541
                "The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received %s."
1542 1543
                % type(T_max)
            )
1544 1545
        if not isinstance(eta_min, (float, int)):
            raise TypeError(
1546
                "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s."
1547 1548
                % type(eta_min)
            )
1549
        assert T_max > 0 and isinstance(
1550 1551
            T_max, int
        ), " 'T_max' must be a positive integer."
1552 1553
        self.T_max = T_max
        self.eta_min = float(eta_min)
1554
        super().__init__(learning_rate, last_epoch, verbose)
1555 1556 1557 1558 1559

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
1560 1561 1562 1563 1564 1565
            return (
                self.last_lr
                + (self.base_lr - self.eta_min)
                * (1 - math.cos(math.pi / self.T_max))
                / 2
            )
1566 1567

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
1568 1569
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)
        ) * (self.last_lr - self.eta_min) + self.eta_min
1570 1571

    def _get_closed_form_lr(self):
1572 1573 1574 1575 1576 1577
        return (
            self.eta_min
            + (self.base_lr - self.eta_min)
            * (1 + math.cos(math.pi * self.last_epoch / self.T_max))
            / 2
        )
G
guguguzi 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630


class MultiplicativeDecay(LRScheduler):
    """
    Multiply the learning rate of ``optimizer`` by the factor given in function ``lr_lambda`` .

    The algorithm can be described as the code below.

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95

        learning_rate = 0.5        # epoch 0,
        learning_rate = 0.475      # epoch 1, 0.5*0.95
        learning_rate = 0.45125    # epoch 2, 0.475*0.95

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the last learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``MultiplicativeDecay`` instance to schedule learning rate.

    Examples:

        .. code-block:: python

            import paddle

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.MultiplicativeDecay(learning_rate=0.5, lr_lambda=lambda x:0.95, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(20):
                for batch_id in range(5):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'MultiplicativeDecay' must be 'function', but received %s."
1631 1632
                % type(lr_lambda)
            )
G
guguguzi 已提交
1633 1634

        self.lr_lambda = lr_lambda
1635
        super().__init__(learning_rate, last_epoch, verbose)
G
guguguzi 已提交
1636 1637

    def get_lr(self):
1638 1639 1640 1641
        cur_lr = self.base_lr
        for epoch in range(1, self.last_epoch + 1):
            cur_lr = cur_lr * self.lr_lambda(epoch)
        return cur_lr
1642 1643 1644 1645


class OneCycleLR(LRScheduler):
    r"""
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    Sets the learning rate according to the one cycle learning rate scheduler.
    The scheduler adjusts the learning rate from an initial learning rate to the maximum learning rate and then
    from that maximum learning rate to the minimum learning rate, which is much less than the initial learning rate.

    It has been proposed in `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates <https://arxiv.org/abs/1708.07120>`_.

    Please note that the default behaviour of this scheduler follows the fastai implementation of one cycle,
    which claims that “unpublished work has shown even better results by using only two phases”.
    If you want the behaviour of this scheduler to be consistent with the paper, please set ``three_phase=True`` .

    Also note that you should update learning rate each step.

    Args:
1660
        max_learning_rate (float): The maximum learning rate. It is a python float number. Functionally, it defines the initial learning rate by ``divide_factor`` .
1661
        total_steps (int): Number of total training steps.
1662
        divide_factor (float, optional): Initial learning rate will be determined by initial_learning_rate = max_learning_rate / divide_factor. Default: 25.
1663 1664
        end_learning_rate (float, optional): The minimum learning rate during training, it should be much less than initial learning rate.
        phase_pct (float): The percentage of total steps which used to increasing learning rate. Default: 0.3.
1665
        anneal_strategy (str, optional): Strategy of adjusting learning rate.'cos' for cosine annealing, 'linear' for linear annealing. Default: 'cos'.
1666
        three_phase (bool, optional): Whether to use three phase.
1667

1668
            If ``True``:
1669

1670 1671 1672
                1. The learning rate will first increase from initial learning rate to maximum learning rate.
                2. Then it will decrease to initial learning rate. Number of step in this phase is the same as the one in first phase.
                3. Finally, it will decrease to minimum learning rate which is much less than initial learning rate.
1673

1674
            If ``False``:
1675

1676 1677
                1. The learning rate will increase to maximum learning rate.
                2. Then it will directly decrease to minimum learning rate.
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``OneCycleLR`` instance to schedule learning rate.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
1730

1731 1732
    """

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    def __init__(
        self,
        max_learning_rate,
        total_steps,
        divide_factor=25.0,
        end_learning_rate=0.0001,
        phase_pct=0.3,
        anneal_strategy='cos',
        three_phase=False,
        last_epoch=-1,
        verbose=False,
    ):
1745 1746 1747
        # Check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
1748 1749 1750 1751
                "'max_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(max_learning_rate)
                )
            )
1752 1753 1754 1755 1756 1757
        if max_learning_rate < 0:
            raise ValueError("'max_learning_rate' must be a positive integer.")

        # Check type and value of end_learning_rate
        if not isinstance(end_learning_rate, (float, int)):
            raise TypeError(
1758 1759 1760 1761
                "'end_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(end_learning_rate)
                )
            )
1762 1763 1764 1765 1766
        if end_learning_rate < 0:
            raise ValueError("'end_learning_rate' must be a positive integer.")

        # Check type and value of total_steps
        if not isinstance(total_steps, int):
1767 1768
            raise TypeError(
                "'total_step' must be 'int', but received {}".format(
1769 1770 1771
                    type(total_steps)
                )
            )
1772 1773 1774 1775 1776 1777
        if total_steps <= 0:
            raise ValueError("'total_step' must be a positive integer.")
        self.total_steps = total_steps

        # Check type and value of pac_start
        if not isinstance(phase_pct, float):
1778 1779
            raise TypeError(
                "'phase_pct' must be 'float', but received {}".format(
1780 1781 1782
                    type(phase_pct)
                )
            )
1783 1784 1785
        if phase_pct < 0 or phase_pct > 1:
            raise ValueError(
                "'phase_pct' must be between 0 and 1, but received {}".format(
1786 1787 1788
                    phase_pct
                )
            )
1789 1790 1791 1792

        # Check type and value of divide_factor
        if not isinstance(divide_factor, (float, int)):
            raise TypeError(
1793 1794 1795 1796
                "'divide_factor' must be 'float' or 'int', but received {}".format(
                    type(divide_factor)
                )
            )
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

        initial_lr = max_learning_rate / float(divide_factor)
        min_lr = float(end_learning_rate)

        if three_phase:
            if phase_pct >= 0.5:
                raise ValueError(
                    "When three_phase is True, 'phase_pct' must be less than 0.5"
                )
            # start step and end step of each phase.
            self._step_config = [
                0,
                phase_pct * self.total_steps - 1,
                2 * phase_pct * self.total_steps - 2,
                self.total_steps - 1,
                self.total_steps - 1,  # for the last step.
            ]
            # step size of each phase.
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[3] - self._step_config[2],
1819 1820
                self._step_config[3]
                - self._step_config[2],  # for the last step.
1821 1822 1823
            ]
            # start lr and end lr of each phase.
            self._lr_config = [
1824 1825 1826 1827
                initial_lr,
                max_learning_rate,
                initial_lr,
                min_lr,
1828 1829 1830
            ]
        else:
            self._step_config = [
1831 1832 1833 1834
                0,
                phase_pct * self.total_steps - 1,
                self.total_steps - 1,
                self.total_steps - 1,
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            ]
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[2] - self._step_config[1],
            ]
            self._lr_config = [initial_lr, max_learning_rate, min_lr]

        # Check anneal_strategy
        if anneal_strategy == 'cos':
            self.anneal_func = self._cos_annealing
        elif anneal_strategy == 'linear':
            self.anneal_func = self._linear_annealing
        else:
            raise ValueError(
1850 1851 1852 1853
                "'anneal_strategy' must by one of 'cos' or 'linear', but received {}".format(
                    anneal_strategy
                )
            )
1854
        super().__init__(initial_lr, last_epoch, verbose)
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    def _cos_annealing(self, start_lr, end_lr, pct):
        cos_out = math.cos(math.pi * pct) + 1
        return end_lr + (start_lr - end_lr) / 2.0 * cos_out

    def _linear_annealing(self, start_lr, end_lr, pct):
        return (end_lr - start_lr) * pct + start_lr

    def get_lr(self):
        current_step = self.last_epoch

        if current_step > self.total_steps:
            raise ValueError(
1868 1869 1870 1871
                "Tried to step {} times. However the number of total steps is {}".format(
                    current_step, self.total_steps
                )
            )
1872

1873
        for i, (end_step, step_size) in enumerate(
1874 1875
            zip(self._step_config[1:], self._steps_size)
        ):
1876 1877 1878 1879
            # i == len(self._lr_config) - 2 catch the last step, otherwise it will return None.
            if current_step <= end_step or i == len(self._lr_config) - 2:
                # self._step_config[i] means start step of a phase.
                percentage = (current_step - self._step_config[i]) / step_size
1880 1881 1882
                return self.anneal_func(
                    self._lr_config[i], self._lr_config[i + 1], percentage
                )
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925


class CyclicLR(LRScheduler):
    r"""
    Set the learning rate according to the cyclic learning rate (CLR) scheduler.
    The scheduler regards the process of learning rate adjustment as one cycle after another.
    It cycles the learning rate between two boundaries with a constant frequency.
    The distance between the two boundaries can be scaled on a per-iteration or per-cycle basis.

    It has been proposed in `Cyclic Learning Rates for Training Neural Networks <https://arxiv.org/abs/1506.01186>`_.

    According to the paper, the cyclic learning rate schedule has three build-in scale methods:

    * "triangular": A basic triangular cycle without any amplitude scaling.
    * "triangular2": A basic triangular cycle that reduce initial amplitude by half each cycle.
    * "exp_range": A cycle that scales initial amplitude by scale function which is defined as :math:`gamma^{iterations}` .

    The initial amplitude is defined as max_learning_rate - base_learning_rate.
    Also note that you should update learning rate each step.

    Args:
        base_learning_rate (float): Initial learning rate, which is the lower boundary in the cycle. The paper recommends
            that set the base_learning_rate to 1/3 or 1/4 of max_learning_rate.
        max_learning_rate (float): Maximum learning rate in the cycle. It defines the cycle amplitude as above.
            Since there is some scaling operation during process of learning rate adjustment,
            max_learning_rate may not actually be reached.
        step_size_up (int): Number of training steps, which is used to increase learning rate in a cycle.
            The step size of one cycle will be defined by step_size_up + step_size_down. According to the paper, step
            size should be set as at least 3 or 4 times steps in one epoch.
        step_size_down (int, optional): Number of training steps, which is used to decrease learning rate in a cycle.
            If not specified, it's value will initialize to `` step_size_up `` . Default: None
        mode (str, optional): one of 'triangular', 'triangular2' or 'exp_range'.
            If scale_fn is specified, this argument will be ignored. Default: 'triangular'
        exp_gamma (float): Constant in 'exp_range' scaling function: exp_gamma**iterations. Used only when mode = 'exp_range'. Default: 1.0
        scale_fn (function, optional): A custom scaling function, which is used to replace three build-in methods.
            It should only have one argument. For all x >= 0, 0 <= scale_fn(x) <= 1.
            If specified, then 'mode' will be ignored. Default: None
        scale_mode (str, optional): One of 'cycle' or 'iterations'. Defines whether scale_fn is evaluated on cycle
            number or cycle iterations (total iterations since start of training). Default: 'cycle'
        last_epoch (int, optional): The index of last epoch. Can be set to restart training.Default: -1, means initial learning rate.
        verbose: (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
1926
        ``CyclicLR`` instance to schedule learning rate.
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5, max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                    max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
    """

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    def __init__(
        self,
        base_learning_rate,
        max_learning_rate,
        step_size_up,
        step_size_down=None,
        mode='triangular',
        exp_gamma=1.0,
        scale_fn=None,
        scale_mode='cycle',
        last_epoch=-1,
        verbose=False,
    ):
1989 1990 1991
        # check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
1992 1993 1994 1995
                "'max_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(max_learning_rate)
                )
            )
1996 1997
        if max_learning_rate < 0:
            raise ValueError(
1998 1999 2000 2001
                "'max_learning_rate' must be a positive integer, but received {}".format(
                    max_learning_rate
                )
            )
2002 2003 2004 2005

        # check type and value of step_size_up
        if not isinstance(step_size_up, int):
            raise TypeError(
2006 2007 2008 2009
                "The type of 'step_size_up' must be int, but received {}".format(
                    type(step_size_up)
                )
            )
2010 2011
        if step_size_up <= 0:
            raise ValueError(
2012 2013 2014 2015
                "'step_size_up' must be a positive integer, but received {}".format(
                    step_size_up
                )
            )
2016 2017 2018 2019 2020

        # check type and value of step_size_down
        if step_size_down is not None:
            if not isinstance(step_size_down, int):
                raise TypeError(
2021 2022 2023 2024
                    "The type of 'step_size_down' must be int, but received {}".format(
                        type(step_size_down)
                    )
                )
2025 2026
            if step_size_down <= 0:
                raise ValueError(
2027 2028 2029 2030
                    "'step_size_down' must be a positive integer, but received {}".format(
                        step_size_down
                    )
                )
2031 2032 2033 2034 2035

        # check type of exp_gamma
        if not isinstance(exp_gamma, float):
            raise TypeError(
                "The type of 'exp_gamma' must be float, but received {}".format(
2036 2037 2038
                    type(exp_gamma)
                )
            )
2039 2040

        step_size_up = float(step_size_up)
2041 2042 2043 2044 2045
        step_size_down = (
            float(step_size_down)
            if step_size_down is not None
            else step_size_up
        )
2046 2047 2048 2049 2050 2051

        self.cycle_size = step_size_up + step_size_down
        self.step_up_pct = step_size_up / self.cycle_size
        self.max_lr = float(max_learning_rate)
        self.amplitude = self.max_lr - base_learning_rate

2052 2053 2054 2055
        if (
            mode not in ['triangular', 'triangular2', 'exp_range']
            and scale_fn is None
        ):
2056 2057 2058 2059 2060
            raise ValueError(
                "'mode' is invalid and 'scale_fn' is not specified, make sure one of 'mode' or 'scale_fn' is valid"
            )
        if scale_mode not in ['cycle', 'iterations']:
            raise ValueError(
2061 2062
                "'scale_mode' must be one of 'cycle' or 'iterations"
            )
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

        self.mode = mode
        self.gamma = exp_gamma  # only for exp_range mode

        if scale_fn is None:
            if self.mode == 'triangular':
                self.scale_fn = self._triangular_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'triangular2':
                self.scale_fn = self._triangular2_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'exp_range':
                self.scale_fn = self._exp_range_scale_fn
                self.scale_mode = 'iterations'
        else:
            self.scale_fn = scale_fn
            self.scale_mode = scale_mode
        super().__init__(base_learning_rate, last_epoch, verbose)

    def _triangular_scale_fn(self, x):
2083
        return 1.0
2084 2085

    def _triangular2_scale_fn(self, x):
2086
        return 1 / (2.0 ** (x - 1))
2087 2088 2089 2090 2091 2092 2093 2094

    def _exp_range_scale_fn(self, x):
        return self.gamma**x

    def get_lr(self):
        iterations = self.last_epoch

        cycle = 1 + iterations // self.cycle_size
2095
        pct_per_cycle = 1.0 + iterations / self.cycle_size - cycle
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

        if pct_per_cycle <= self.step_up_pct:
            scale_factor = pct_per_cycle / self.step_up_pct
        else:
            scale_factor = (1 - pct_per_cycle) / (1 - self.step_up_pct)

        base_height = self.amplitude * scale_factor

        lr = self.base_lr + base_height * self.scale_fn(eval(self.scale_mode))

        return lr