lr.py 83.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings
17 18 19

import numpy

20
import paddle.fluid.core as core
21 22
from paddle import Tensor

J
Jiabin Yang 已提交
23
from ..fluid.framework import _in_legacy_dygraph
24

G
guguguzi 已提交
25
__all__ = [  # noqa
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    'LRScheduler',
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'LinearWarmup',
    'ExponentialDecay',
    'MultiStepDecay',
    'StepDecay',
    'LambdaDecay',
    'ReduceOnPlateau',
    'CosineAnnealingDecay',
    'MultiplicativeDecay',
    'OneCycleLR',
    'CyclicLR',
42 43 44
]


45
class LRScheduler:
46 47 48 49
    """

    LRScheduler Base class. Define the common interface of a learning rate scheduler.

Z
Zhou Wei 已提交
50
    User can import it by ``from paddle.optimizer.lr import LRScheduler`` ,
51 52 53 54 55 56 57 58 59 60 61 62 63 64

    then overload it for your subclass and have a custom implementation of ``get_lr()`` .

    Otherwise, an ``NotImplementedError`` exception will be thrown.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        instance to schedule learning rate.

    Examples:
65
        Here is an example of a simple ``StepDecay`` implementation.
G
guguguzi 已提交
66

67
        .. code-block:: python
G
guguguzi 已提交
68

69
            import paddle
Z
Zhou Wei 已提交
70
            from paddle.optimizer.lr import LRScheduler
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

            class StepDecay(LRScheduler):
                def __init__(self,
                            learning_rate,
                            step_size,
                            gamma=0.1,
                            last_epoch=-1,
                            verbose=False):
                    if not isinstance(step_size, int):
                        raise TypeError(
                            "The type of 'step_size' must be 'int', but received %s." %
                            type(step_size))
                    if gamma >= 1.0:
                        raise ValueError('gamma should be < 1.0.')

                    self.step_size = step_size
                    self.gamma = gamma
88
                    super().__init__(learning_rate, last_epoch, verbose)
89 90 91 92

                def get_lr(self):
                    i = self.last_epoch // self.step_size
                    return self.base_lr * (self.gamma**i)
93 94 95 96 97 98

    """

    def __init__(self, learning_rate=0.1, last_epoch=-1, verbose=False):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
99 100 101 102
                "The type of learning rate must be float, but received {}".format(
                    type(learning_rate)
                )
            )
103 104 105 106 107 108 109 110 111
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = last_epoch
        self.verbose = verbose
        self._var_name = None

        self.step()

    def __call__(self):
G
guguguzi 已提交
112
        """
113
        Return lastest computed learning rate on current epoch.
114 115 116 117 118
        """
        return self.last_lr

    def step(self, epoch=None):
        """
119

G
guguguzi 已提交
120
        ``step`` should be called after ``optimizer.step`` . It will update the learning rate in optimizer according to current ``epoch`` .
121
        The new learning rate will take effect on next ``optimizer.step`` .
122 123 124 125 126 127

        Args:
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
128

129 130 131 132 133 134 135 136 137 138 139 140
        """
        if epoch is None:
            self.last_epoch += 1
            self.last_lr = self.get_lr()
        else:
            self.last_epoch = epoch
            if hasattr(self, "_get_closed_form_lr"):
                self.last_lr = self._get_closed_form_lr()
            else:
                self.last_lr = self.get_lr()

        if self.verbose:
141 142 143 144 145
            print(
                'Epoch {}: {} set learning rate to {}.'.format(
                    self.last_epoch, self.__class__.__name__, self.last_lr
                )
            )
146 147 148

    def state_dict(self):
        """
149

150 151
        Returns the state of the scheduler as a :class:`dict`.

152
        It is a subset of ``self.__dict__`` .
153
        """
154
        self.state_keys()
155 156 157 158 159 160 161 162 163
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Tensor):
                assert value.shape == [
                    1
                ], "shape of Tensor in state_dict must be [1] {}".format(
164 165
                    value.shape
                )
166 167 168 169 170
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

171
    # For those subclass who overload LRScheduler, "last_epoch, last_lr" will be saved by default.
172
    # (Note): you can change it for your subclass.
173
    def state_keys(self):
174
        """
175 176 177 178 179 180 181

        For those subclass who overload ``LRScheduler`` (Base Class). Acquiescently, "last_epoch, last_lr" will be saved by ``self.keys = ['last_epoch', 'last_lr']`` .

        ``last_epoch`` is the current epoch num, and ``last_lr`` is the current learning rate.

        If you want to change the default behavior, you should have a custom implementation of ``_state_keys()`` to redefine ``self.keys`` .

182 183 184
        """
        self.keys = ['last_epoch', 'last_lr']

185
    def set_state_dict(self, state_dict):
186
        """
187

188 189
        Loads the schedulers state.
        """
190
        self.state_keys()
191 192 193 194 195
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
196 197 198 199
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
200 201 202 203 204
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

205 206
    # alias for set_state_dict
    set_dict = set_state_dict
207 208

    def get_lr(self):
209
        """
G
guguguzi 已提交
210

211 212 213 214
        For those subclass who overload ``LRScheduler`` (Base Class), User should have a custom implementation of ``get_lr()`` .

        Otherwise, an ``NotImplementedError`` exception will be thrown.
        """
215 216 217 218
        # calculate by python float
        raise NotImplementedError


219
class NoamDecay(LRScheduler):
220
    r"""
221

G
guguguzi 已提交
222
    Applies Noam Decay to the initial learning rate.
223 224 225 226 227 228 229

    The algorithm can be described as following.

    .. math::

        new\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(epoch^{-0.5}, epoch * warmup\_steps^{-1.5})

G
guguguzi 已提交
230
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
231 232 233 234 235 236 237


    Args:
        d$_{model}$(int): The dimensionality of input and output feature vector of model. It is a python int number.
        warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number
        learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
238
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
239 240

    Returns:
241
        ``NoamDecay`` instance to schedule learning rate.
242 243 244 245 246 247 248

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

249
            # train on default dynamic graph mode
250
            linear = paddle.nn.Linear(10, 10)
251 252
            scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
253
            for epoch in range(20):
Z
Zhou Wei 已提交
254
                for batch_id in range(5):
255
                    x = paddle.uniform([10, 10])
256
                    out = linear(x)
C
chentianyu03 已提交
257
                    loss = paddle.mean(out)
258
                    loss.backward()
259 260
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
261 262
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
263

264
            # train on static graph mode
265 266 267 268
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
269 270
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
271 272
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
273
                scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
274 275 276 277 278 279
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
280
                for batch_id in range(5):
281 282 283 284 285 286
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
287
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
288 289
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
290 291 292

    """

293 294 295 296 297 298 299 300
    def __init__(
        self,
        d_model,
        warmup_steps,
        learning_rate=1.0,
        last_epoch=-1,
        verbose=False,
    ):
301 302
        self.d_model = d_model
        self.warmup_steps = warmup_steps
303
        super().__init__(learning_rate, last_epoch, verbose)
304 305 306 307 308 309 310 311 312 313

    def get_lr(self):
        if self.last_epoch == 0:
            a = 1
        else:
            a = self.last_epoch**-0.5
        b = self.warmup_steps**-1.5 * self.last_epoch
        return self.base_lr * (self.d_model**-0.5) * min(a, b)


314
class PiecewiseDecay(LRScheduler):
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    """

    Piecewise learning rate scheduler.

    The algorithm can be described as the code below:

    .. code-block:: text

        boundaries = [100, 200]
        values = [1.0, 0.5, 0.1]
        if epoch < 100:
            learning_rate = 1.0
        elif 100 <= global_step < 200:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Args:
G
guguguzi 已提交
333 334
        boundaries(list|tuple): A list/tuple of steps numbers. The type of element in the list is python int.
        values(list|tuple): A list/tuple of learning rate values that will be picked during different epoch boundaries.
335 336
            The type of element in the list is python float.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
337
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
338 339

    Returns:
340
        ``PiecewiseDecay`` instance to schedule learning rate.
341 342

    Examples:
G
guguguzi 已提交
343

344 345 346 347 348
        .. code-block:: python

            import paddle
            import numpy as np

349
            # train on default dynamic graph mode
350
            linear = paddle.nn.Linear(10, 10)
351 352
            scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
353
            for epoch in range(20):
Z
Zhou Wei 已提交
354
                for batch_id in range(5):
355
                    x = paddle.uniform([10, 10])
356
                    out = linear(x)
C
chentianyu03 已提交
357
                    loss = paddle.mean(out)
358
                    loss.backward()
359 360
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
361 362
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
363

364
            # train on static graph mode
365 366 367 368
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
369 370
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
371 372
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
373
                scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
374 375 376 377 378 379
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
380
                for batch_id in range(5):
381 382 383 384 385 386
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
387
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
388 389
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
390 391 392 393 394
    """

    def __init__(self, boundaries, values, last_epoch=-1, verbose=False):
        self.boundaries = boundaries
        self.values = values
395
        super().__init__(last_epoch=last_epoch, verbose=verbose)
396 397 398 399 400 401 402 403

    def get_lr(self):
        for i in range(len(self.boundaries)):
            if self.last_epoch < self.boundaries[i]:
                return self.values[i]
        return self.values[len(self.values) - 1]


404
class NaturalExpDecay(LRScheduler):
405
    r"""
406 407

    Applies natural exponential decay to the initial learning rate.
G
guguguzi 已提交
408

409 410 411 412
    The algorithm can be described as following:

    .. math::

413
        new\_learning\_rate = learning\_rate * e^{- gamma * epoch}
414 415 416

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
417
        gamma (float, optional): A Ratio to update the learning rate, should greater than 0.0 to make learning rate decay. Default: 0.1.
418
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
419
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
420 421

    Returns:
422
        ``NaturalExpDecay`` instance to schedule learning rate.
423 424

    Examples:
G
guguguzi 已提交
425

426 427 428 429 430
        .. code-block:: python

            import paddle
            import numpy as np

431
            # train on default dynamic graph mode
432
            linear = paddle.nn.Linear(10, 10)
433 434
            scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
435
            for epoch in range(20):
Z
Zhou Wei 已提交
436
                for batch_id in range(5):
437
                    x = paddle.uniform([10, 10])
438
                    out = linear(x)
C
chentianyu03 已提交
439
                    loss = paddle.mean(out)
440
                    loss.backward()
441 442
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
443 444
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
445

446
            # train on static graph mode
447 448 449 450
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
451 452
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
453 454
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
455
                scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
456 457 458 459 460 461
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
462
                for batch_id in range(5):
463 464 465 466 467 468
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
469
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
470 471
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
472 473 474
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
475 476 477
        assert (
            gamma > 0.0
        ), " 'gamma' must be a positive number so that the learning rate will decay."
478
        self.gamma = gamma
479
        super().__init__(learning_rate, last_epoch, verbose)
480 481 482 483 484

    def get_lr(self):
        return self.base_lr * math.exp(-1 * self.gamma * self.last_epoch)


485
class InverseTimeDecay(LRScheduler):
486
    r"""
487 488 489 490 491 492 493

    Applies inverse time decay to the initial learning rate.

    The algorithm can be described as following:

    .. math::

494
        new\_learning\_rate = \frac{learning\_rate}{1 + gamma * epoch}
495 496 497

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
498
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
499 500
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
501
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
502 503

    Returns:
504
        ``InverseTimeDecay`` instance to schedule learning rate.
505 506

    Examples:
G
guguguzi 已提交
507

508 509 510 511 512
        .. code-block:: python

            import paddle
            import numpy as np

513
            # train on default dynamic graph mode
514
            linear = paddle.nn.Linear(10, 10)
515 516
            scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
517
            for epoch in range(20):
Z
Zhou Wei 已提交
518
                for batch_id in range(5):
519
                    x = paddle.uniform([10, 10])
520
                    out = linear(x)
C
chentianyu03 已提交
521
                    loss = paddle.mean(out)
522
                    loss.backward()
523 524
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
525 526
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
527

528
            # train on static graph mode
529 530 531 532
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
533 534
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
535 536
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
537
                scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
538 539 540 541 542 543
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
544
                for batch_id in range(5):
545 546 547 548 549 550
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
551
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
552 553
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
554 555 556 557 558

    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
559
        super().__init__(learning_rate, last_epoch, verbose)
560 561 562 563 564

    def get_lr(self):
        return self.base_lr / (1 + self.gamma * self.last_epoch)


565
class PolynomialDecay(LRScheduler):
566
    r"""
567 568 569 570 571 572 573 574 575

    Applies polynomial decay to the initial learning rate.

    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

G
guguguzi 已提交
576
        decay\_steps & = decay\_steps * math.ceil(\frac{epoch}{decay\_steps})
577

578
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
579 580 581 582 583

    If cycle is set to False, then:

    .. math::

G
guguguzi 已提交
584
        epoch & = min(epoch, decay\_steps)
585

586
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
587 588 589 590


    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
591
        decay_steps(int): The decay step size. It determines the decay cycle. It must be a positive integer.
592
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
593
        power(float, optional): Power of polynomial, should greater than 0.0 to get learning rate decay. Default: 1.0.
G
guguguzi 已提交
594
        cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease
595 596
            to ``end_lr`` .  If False, the learning rate is monotone decreasing. Default: False.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
597
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
598 599

    Returns:
600
        ``PolynomialDecay`` instance to schedule learning rate.
601 602

    Examples:
G
guguguzi 已提交
603

604 605 606 607 608
        .. code-block:: python

            import paddle
            import numpy as np

609
            # train on default dynamic graph mode
610
            linear = paddle.nn.Linear(10, 10)
611 612
            scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
613
            for epoch in range(20):
Z
Zhou Wei 已提交
614
                for batch_id in range(5):
615
                    x = paddle.uniform([10, 10])
616
                    out = linear(x)
C
chentianyu03 已提交
617
                    loss = paddle.mean(out)
618
                    loss.backward()
619 620
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
621 622
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
623

624
            # train on static graph mode
625 626 627 628
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
629 630
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
631 632
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
633
                scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
634 635 636 637 638 639
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
640
                for batch_id in range(5):
641 642 643 644 645 646
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
647
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
648 649
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
650 651
    """

652 653 654 655 656 657 658 659 660 661
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_lr=0.0001,
        power=1.0,
        cycle=False,
        last_epoch=-1,
        verbose=False,
    ):
662
        assert decay_steps > 0 and isinstance(
663 664
            decay_steps, int
        ), " 'decay_steps' must be a positive integer."
665 666
        self.decay_steps = decay_steps
        self.end_lr = end_lr
667 668 669
        assert (
            power > 0.0
        ), " 'power' must be greater than 0.0 so that the learning rate will decay."
670 671
        self.power = power
        self.cycle = cycle
672
        super().__init__(learning_rate, last_epoch, verbose)
673 674 675 676 677 678

    def get_lr(self):
        tmp_epoch_num = self.last_epoch
        tmp_decay_steps = self.decay_steps
        if self.cycle:
            div_res = math.ceil(
679 680
                float(self.last_epoch) / float(self.decay_steps)
            )
681 682 683 684 685 686 687 688

            if self.last_epoch == 0:
                div_res = 1
            tmp_decay_steps = self.decay_steps * div_res
        else:
            tmp_epoch_num = min(self.last_epoch, self.decay_steps)

        return (self.base_lr - self.end_lr) * (
689 690
            (1 - float(tmp_epoch_num) / float(tmp_decay_steps)) ** self.power
        ) + self.end_lr
691 692


693
class LinearWarmup(LRScheduler):
694
    r"""
695 696 697

    Linear learning rate warm up strategy. Update the learning rate preliminarily before the normal learning rate scheduler.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
G
guguguzi 已提交
698

699
    When epoch < warmup_steps, learning rate is updated as:
G
guguguzi 已提交
700

701
    .. math::
G
guguguzi 已提交
702

703
            lr = start\_lr + (end\_lr - start\_lr) * \frac{epoch}{warmup\_steps}
G
guguguzi 已提交
704

705
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
G
guguguzi 已提交
706

707
    When epoch >= warmup_steps, learning rate is updated as:
G
guguguzi 已提交
708

709
    .. math::
G
guguguzi 已提交
710

711
            lr = learning_rate
G
guguguzi 已提交
712

713
    where ``learning_rate`` is float or any subclass of ``LRScheduler`` .
714 715

    Args:
716
        learning_rate (float|LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``LRScheduler`` .
717
        warmup_steps (int): total steps of warm up. It must be a positive integer.
718 719 720
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
721
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
722 723

    Returns:
724
        ``LinearWarmup`` instance to schedule learning rate.
725 726

    Examples:
G
guguguzi 已提交
727

728 729 730 731 732
        .. code-block:: python

            import paddle
            import numpy as np

733
            # train on default dynamic graph mode
734
            linear = paddle.nn.Linear(10, 10)
735
            scheduler = paddle.optimizer.lr.LinearWarmup(
736
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
737
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
738
            for epoch in range(20):
Z
Zhou Wei 已提交
739
                for batch_id in range(5):
740
                    x = paddle.uniform([10, 10])
741
                    out = linear(x)
C
chentianyu03 已提交
742
                    loss = paddle.mean(out)
743
                    loss.backward()
744 745
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
746 747
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
748

749
            # train on static graph mode
750 751 752 753
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
754 755
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
756 757
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
758
                scheduler = paddle.optimizer.lr.LinearWarmup(
759 760 761 762 763 764 765
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
766
                for batch_id in range(5):
767 768 769 770 771 772
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
773
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
774 775
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
776 777
    """

778 779 780 781 782 783 784 785 786 787 788 789 790 791
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        last_epoch=-1,
        verbose=False,
    ):
        type_check = (
            isinstance(learning_rate, float)
            or isinstance(learning_rate, int)
            or isinstance(learning_rate, LRScheduler)
        )
792 793
        if not type_check:
            raise TypeError(
794 795 796 797
                "the type of learning_rate should be [int, float or LRScheduler], the current type is {}".format(
                    learning_rate
                )
            )
798
        self.learning_rate = learning_rate
799
        assert warmup_steps > 0 and isinstance(
800 801
            warmup_steps, int
        ), " 'warmup_steps' must be a positive integer."
802 803 804
        self.warmup_steps = warmup_steps
        self.start_lr = start_lr
        self.end_lr = end_lr
805 806 807
        assert (
            end_lr > start_lr
        ), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
808
        super().__init__(start_lr, last_epoch, verbose)
809

810 811 812 813 814 815
    def state_dict(self):
        """
        Returns the state of the LinearWarmup scheduler as a :class:`dict`.

        It is a subset of ``self.__dict__`` .
        """
816
        state_dict = super().state_dict()
817 818 819 820 821 822 823 824
        if isinstance(self.learning_rate, LRScheduler):
            state_dict["LinearWarmup_LR"] = self.learning_rate.state_dict()
        return state_dict

    def set_state_dict(self, state_dict):
        """
        Loads state_dict for LinearWarmup scheduler.
        """
825
        super().set_state_dict(state_dict)
826 827 828
        if isinstance(self.learning_rate, LRScheduler):
            self.learning_rate.set_state_dict(state_dict["LinearWarmup_LR"])

829 830 831
    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            return (self.end_lr - self.start_lr) * float(
832 833
                self.last_epoch
            ) / float(self.warmup_steps) + self.start_lr
834
        else:
835
            if isinstance(self.learning_rate, LRScheduler):
836 837
                self.learning_rate.step(self.last_epoch - self.warmup_steps)
                return self.learning_rate()
838 839 840 841

            return self.learning_rate


842
class ExponentialDecay(LRScheduler):
843
    r"""
844

845
    Update learning rate by `gamma` each epoch.
846 847

    The algorithm can be described as following.
G
guguguzi 已提交
848

849 850 851 852 853 854
    .. math::

        new\_learning\_rate = last\_learning\_rate * gamma

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
855
        gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
856
            It should be in interval (0.0, 1.0).
857
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
858
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
859 860

    Returns:
861
        ``ExponentialDecay`` instance to schedule learning rate.
862 863

    Examples:
G
guguguzi 已提交
864

865 866 867 868 869
        .. code-block:: python

            import paddle
            import numpy as np

870
            # train on default dynamic graph mode
871
            linear = paddle.nn.Linear(10, 10)
872 873
            scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
874
            for epoch in range(20):
Z
Zhou Wei 已提交
875
                for batch_id in range(5):
876
                    x = paddle.uniform([10, 10])
877
                    out = linear(x)
C
chentianyu03 已提交
878
                    loss = paddle.mean(out)
879
                    loss.backward()
880 881
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
882 883
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
884

885
            # train on static graph mode
886 887 888 889
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
890 891
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
892 893
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
894
                scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
895 896 897 898 899 900
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
901
                for batch_id in range(5):
902 903 904 905 906 907
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
908
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
909 910
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
911 912 913
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
914 915 916
        assert (
            gamma > 0.0 and gamma < 1.0
        ), " 'gamma' must be in interval (0.0, 1.0) so that the learning rate will decay."
917
        self.gamma = gamma
918
        super().__init__(learning_rate, last_epoch, verbose)
919 920 921 922 923

    def get_lr(self):
        return self.base_lr * (self.gamma**self.last_epoch)


924
class MultiStepDecay(LRScheduler):
925
    """
926
    Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
927

G
guguguzi 已提交
928
    The algorithm can be described as the code below.
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        gamma = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
G
guguguzi 已提交
945
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
946 947
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
948
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
949

950 951

    Returns:
952
        ``MultiStepDecay`` instance to schedule learning rate.
953 954

    Examples:
G
guguguzi 已提交
955

956 957 958 959 960
        .. code-block:: python

            import paddle
            import numpy as np

961
            # train on default dynamic graph mode
962
            linear = paddle.nn.Linear(10, 10)
963 964
            scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
965
            for epoch in range(20):
Z
Zhou Wei 已提交
966
                for batch_id in range(5):
967
                    x = paddle.uniform([10, 10])
968
                    out = linear(x)
C
chentianyu03 已提交
969
                    loss = paddle.mean(out)
970
                    loss.backward()
971 972
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
973 974
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
975

976
            # train on static graph mode
977 978 979 980
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
981 982
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
983 984
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
985
                scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
986 987 988 989 990 991
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
992
                for batch_id in range(5):
993 994 995 996 997 998
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
999
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1000 1001
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1002 1003
    """

1004 1005 1006
    def __init__(
        self, learning_rate, milestones, gamma=0.1, last_epoch=-1, verbose=False
    ):
1007 1008 1009
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1010 1011
                % type(milestones)
            )
1012

1013 1014
        if not all(
            [
1015 1016
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
1017 1018
            ]
        ):
1019 1020 1021 1022 1023 1024
            raise ValueError('The elements of milestones must be incremented')
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

        self.milestones = milestones
        self.gamma = gamma
1025
        super().__init__(learning_rate, last_epoch, verbose)
1026 1027 1028 1029 1030

    def get_lr(self):
        for i in range(len(self.milestones)):
            if self.last_epoch < self.milestones[i]:
                return self.base_lr * (self.gamma**i)
1031
        return self.base_lr * (self.gamma ** len(self.milestones))
1032 1033


1034
class StepDecay(LRScheduler):
1035 1036 1037
    """
    Update the learning rate of ``optimizer`` by ``gamma`` every ``step_size`` number of epoch.

G
guguguzi 已提交
1038
    The algorithm can be described as the code below.
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        gamma = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
1053
        step_size (int): the interval to update. It must be a positive integer.
G
guguguzi 已提交
1054
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
1055 1056
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1057
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1058 1059

    Returns:
1060
        ``StepDecay`` instance to schedule learning rate.
1061 1062 1063


    Examples:
G
guguguzi 已提交
1064

1065 1066 1067 1068 1069
        .. code-block:: python

            import paddle
            import numpy as np

1070
            # train on default dynamic graph mode
1071
            linear = paddle.nn.Linear(10, 10)
1072 1073
            scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1074
            for epoch in range(20):
Z
Zhou Wei 已提交
1075
                for batch_id in range(5):
1076
                    x = paddle.uniform([10, 10])
1077
                    out = linear(x)
C
chentianyu03 已提交
1078
                    loss = paddle.mean(out)
1079
                    loss.backward()
1080 1081
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1082 1083
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1084

1085
            # train on static graph mode
1086 1087 1088 1089
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1090 1091
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1092 1093
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1094
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
1095 1096 1097 1098 1099 1100
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1101
                for batch_id in range(5):
1102 1103 1104 1105 1106 1107
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1108
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1109 1110
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1111 1112
    """

1113 1114 1115
    def __init__(
        self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False
    ):
1116 1117
        if not isinstance(step_size, int):
            raise TypeError(
1118 1119 1120
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1121 1122 1123
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

1124
        assert step_size > 0 and isinstance(
1125 1126
            step_size, int
        ), " 'step_size' must be a positive integer."
1127 1128
        self.step_size = step_size
        self.gamma = gamma
1129
        super().__init__(learning_rate, last_epoch, verbose)
1130 1131 1132 1133 1134 1135

    def get_lr(self):
        i = self.last_epoch // self.step_size
        return self.base_lr * (self.gamma**i)


1136
class LambdaDecay(LRScheduler):
1137 1138 1139
    """
    Sets the learning rate of ``optimizer`` by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

G
guguguzi 已提交
1140
    The algorithm can be described as the code below.
1141 1142 1143 1144 1145 1146

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

1147 1148 1149
        learning_rate = 0.5        # epoch 0, 0.5*0.95**0
        learning_rate = 0.475      # epoch 1, 0.5*0.95**1
        learning_rate = 0.45125    # epoch 2, 0.5*0.95**2
1150 1151 1152 1153 1154

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1155
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
1156

1157
    Returns:
1158
        ``LambdaDecay`` instance to schedule learning rate.
1159 1160

    Examples:
G
guguguzi 已提交
1161

1162 1163 1164 1165 1166
        .. code-block:: python

            import paddle
            import numpy as np

1167
            # train on default dynamic graph mode
1168
            linear = paddle.nn.Linear(10, 10)
1169 1170
            scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1171
            for epoch in range(20):
Z
Zhou Wei 已提交
1172
                for batch_id in range(5):
1173
                    x = paddle.uniform([10, 10])
1174
                    out = linear(x)
C
chentianyu03 已提交
1175
                    loss = paddle.mean(out)
1176
                    loss.backward()
1177 1178
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1179 1180
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1181

1182
            # train on static graph mode
1183 1184 1185 1186
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1187 1188
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1189 1190
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1191
                scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
1192 1193 1194 1195 1196 1197
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1198
                for batch_id in range(5):
1199 1200 1201 1202 1203 1204
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1205
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1206 1207
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1208 1209 1210 1211 1212 1213

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
1214
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1215 1216
                % type(lr_lambda)
            )
1217 1218

        self.lr_lambda = lr_lambda
1219
        super().__init__(learning_rate, last_epoch, verbose)
1220 1221 1222 1223 1224

    def get_lr(self):
        return self.base_lr * self.lr_lambda(self.last_epoch)


1225
class ReduceOnPlateau(LRScheduler):
1226
    """
G
guguguzi 已提交
1227
    Reduce learning rate when ``metrics`` has stopped descending. Models often benefit from reducing the learning rate
1228 1229
    by 2 to 10 times once model performance has no longer improvement.

G
guguguzi 已提交
1230 1231 1232
    The ``metrics`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``metrics``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * factor`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``metrics`` stop ascending for a ``patience``
1233 1234 1235 1236 1237 1238
    number of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming above operation.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
1239 1240
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
1241
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
G
guguguzi 已提交
1242
        factor (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * factor`` .
1243
            It should be less than 1.0. Default: 0.1.
G
guguguzi 已提交
1244
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
1245
            Default: 10.
G
guguguzi 已提交
1246
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
1247 1248
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
G
guguguzi 已提交
1249
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
1250 1251 1252
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
G
guguguzi 已提交
1253
        epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon,
1254
            the update is ignored. Default: 1e-8.
1255 1256
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.

G
guguguzi 已提交
1257

1258
    Returns:
1259
        ``ReduceOnPlateau`` instance to schedule learning rate.
1260 1261 1262 1263 1264 1265 1266 1267


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1268
            # train on default dynamic graph mode
1269
            linear = paddle.nn.Linear(10, 10)
1270 1271
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1272
            for epoch in range(20):
Z
Zhou Wei 已提交
1273
                for batch_id in range(5):
1274
                    x = paddle.uniform([10, 10])
1275
                    out = linear(x)
C
chentianyu03 已提交
1276
                    loss = paddle.mean(out)
1277
                    loss.backward()
1278 1279
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1280 1281
                    scheduler.step(loss)    # If you update learning rate each step
              # scheduler.step(loss)        # If you update learning rate each epoch
1282

1283
            # train on static graph mode
1284 1285 1286 1287
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1288 1289
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1290 1291
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1292
                scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
1293 1294 1295 1296 1297 1298
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1299
                for batch_id in range(5):
1300 1301 1302 1303 1304 1305
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1306
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1307 1308
                    scheduler.step(out[0])    # If you update learning rate each step
              # scheduler.step(out[0])        # If you update learning rate each epoch
1309 1310 1311

    """

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    def __init__(
        self,
        learning_rate,
        mode='min',
        factor=0.1,
        patience=10,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        epsilon=1e-8,
        verbose=False,
    ):
1325 1326 1327 1328 1329 1330 1331
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode: ' + mode + ' is unknown!')
        self.mode = mode

        if factor >= 1.0:
            raise ValueError(
1332 1333
                'new_lr = origin_lr * gamma and gamma should be < 1.0.'
            )
1334 1335 1336 1337
        self.factor = factor

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
1338 1339 1340
            raise ValueError(
                'threshold mode: ' + threshold_mode + ' is unknown!'
            )
1341 1342 1343
        self.threshold_mode = threshold_mode
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
1344
                "The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s."
1345 1346
                % type(learning_rate)
            )
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = min_lr
        self.epsilon = epsilon

        self.cooldown_counter = 0
        self.best = None
        self.num_bad_epochs = 0

        # Can not call Parent __init__, so implement here.
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = 0
        self.verbose = verbose
        self._var_name = None

    # "cooldown_counter / best / num_bad_epochs / last_epoch / last_lr" will be stored.
1367
    def state_keys(self):
1368
        self.keys = [
1369 1370 1371 1372 1373
            'cooldown_counter',
            'best',
            'num_bad_epochs',
            'last_epoch',
            'last_lr',
1374 1375 1376 1377
        ]

    def step(self, metrics, epoch=None):
        """
G
guguguzi 已提交
1378
        step should be called after `optimizer.step()` . It will update the learning rate in optimizer according to ``metrics`` .
1379 1380 1381
        The new learning rate will take effect on next epoch.

        Args:
G
guguguzi 已提交
1382
            metrics (Tensor|numpy.ndarray|float): Which will be monitored to determine whether the learning rate will reduce.
1383 1384 1385 1386 1387 1388
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. If it's 'Tensor' or
                'numpy.ndarray', its shape must be [1].
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
G
guguguzi 已提交
1389

1390
        Examples:
1391
            Please refer to the example of current LRScheduler.
1392 1393 1394 1395 1396 1397
        """
        if epoch is None:
            self.last_epoch = self.last_epoch + 1
        else:
            self.last_epoch = epoch

J
Jiabin Yang 已提交
1398
        if not _in_legacy_dygraph():
1399
            tmp = core.eager.Tensor
1400
        else:
1401 1402
            # need to declarate explicitly
            from paddle.framework import VarBase as Tensor
1403

1404
            tmp = Tensor
1405
        # loss must be float, numpy.ndarray or 1-D Tensor with shape [1]
1406
        if isinstance(metrics, (tmp, numpy.ndarray)):
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
            assert len(metrics.shape) == 1 and metrics.shape[0] == 1, (
                "the metrics.shape "
                "should be (1L,), but the current metrics.shape is {}. Maybe that "
                "you should call paddle.mean to process it first.".format(
                    metrics.shape
                )
            )
        elif not isinstance(
            metrics, (int, float, numpy.float32, numpy.float64)
        ):
1417
            raise TypeError(
1418 1419 1420 1421
                "metrics must be 'int', 'float', 'np.float', 'numpy.ndarray' or 'paddle.Tensor', but receive {}".format(
                    type(metrics)
                )
            )
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best is None or self._is_better(metrics, self.best):
                self.best = metrics
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = max(self.last_lr * self.factor, self.min_lr)
                if self.last_lr - new_lr > self.epsilon:
                    self.last_lr = new_lr
                    if self.verbose:
1439 1440 1441 1442 1443 1444 1445
                        print(
                            'Epoch {}: {} set learning rate to {}.'.format(
                                self.last_epoch,
                                self.__class__.__name__,
                                self.last_lr,
                            )
                        )
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold


1461
class CosineAnnealingDecay(LRScheduler):
1462
    r"""
1463

G
guguguzi 已提交
1464 1465
    Set the learning rate using a cosine annealing schedule, where :math:`\eta_{max}` is set to
    the initial learning_rate. :math:`T_{cur}` is the number of epochs since the last restart in
1466
    SGDR.
1467 1468 1469 1470

    The algorithm can be described as following.

    .. math::
1471

1472 1473
        \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
        + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
G
guguguzi 已提交
1474
        & T_{cur} \neq (2k+1)T_{max};
1475 1476 1477 1478

        \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
        \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
        & T_{cur} = (2k+1)T_{max}.
G
guguguzi 已提交
1479 1480

    It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_.
1481
    Note that this only implements the cosine annealing part of SGDR, and not the restarts.
G
guguguzi 已提交
1482

1483 1484
    Args:
        learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number.
1485
        T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. It must be a positive integer.
1486 1487
        eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1488
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1489 1490

    Returns:
1491
        ``CosineAnnealingDecay`` instance to schedule learning rate.
1492 1493

    Examples:
G
guguguzi 已提交
1494

1495 1496 1497 1498 1499
        .. code-block:: python

            import paddle
            import numpy as np

1500
            # train on default dynamic graph mode
1501
            linear = paddle.nn.Linear(10, 10)
1502 1503
            scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1504
            for epoch in range(20):
Z
Zhou Wei 已提交
1505
                for batch_id in range(5):
1506
                    x = paddle.uniform([10, 10])
1507
                    out = linear(x)
C
chentianyu03 已提交
1508
                    loss = paddle.mean(out)
1509
                    loss.backward()
1510 1511
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1512 1513
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1514

1515
            # train on static graph mode
1516 1517 1518 1519
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1520 1521
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1522 1523
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1524
                scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
1525 1526 1527 1528 1529 1530
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1531
                for batch_id in range(5):
1532 1533 1534 1535 1536 1537
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1538
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1539 1540
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1541 1542
    """

1543 1544 1545
    def __init__(
        self, learning_rate, T_max, eta_min=0, last_epoch=-1, verbose=False
    ):
1546 1547
        if not isinstance(T_max, int):
            raise TypeError(
1548
                "The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received %s."
1549 1550
                % type(T_max)
            )
1551 1552
        if not isinstance(eta_min, (float, int)):
            raise TypeError(
1553
                "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s."
1554 1555
                % type(eta_min)
            )
1556
        assert T_max > 0 and isinstance(
1557 1558
            T_max, int
        ), " 'T_max' must be a positive integer."
1559 1560
        self.T_max = T_max
        self.eta_min = float(eta_min)
1561
        super().__init__(learning_rate, last_epoch, verbose)
1562 1563 1564 1565 1566

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
1567 1568 1569 1570 1571 1572
            return (
                self.last_lr
                + (self.base_lr - self.eta_min)
                * (1 - math.cos(math.pi / self.T_max))
                / 2
            )
1573 1574

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
1575 1576
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)
        ) * (self.last_lr - self.eta_min) + self.eta_min
1577 1578

    def _get_closed_form_lr(self):
1579 1580 1581 1582 1583 1584
        return (
            self.eta_min
            + (self.base_lr - self.eta_min)
            * (1 + math.cos(math.pi * self.last_epoch / self.T_max))
            / 2
        )
G
guguguzi 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637


class MultiplicativeDecay(LRScheduler):
    """
    Multiply the learning rate of ``optimizer`` by the factor given in function ``lr_lambda`` .

    The algorithm can be described as the code below.

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95

        learning_rate = 0.5        # epoch 0,
        learning_rate = 0.475      # epoch 1, 0.5*0.95
        learning_rate = 0.45125    # epoch 2, 0.475*0.95

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the last learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``MultiplicativeDecay`` instance to schedule learning rate.

    Examples:

        .. code-block:: python

            import paddle

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.MultiplicativeDecay(learning_rate=0.5, lr_lambda=lambda x:0.95, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(20):
                for batch_id in range(5):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'MultiplicativeDecay' must be 'function', but received %s."
1638 1639
                % type(lr_lambda)
            )
G
guguguzi 已提交
1640 1641

        self.lr_lambda = lr_lambda
1642
        super().__init__(learning_rate, last_epoch, verbose)
G
guguguzi 已提交
1643 1644

    def get_lr(self):
1645 1646 1647 1648
        cur_lr = self.base_lr
        for epoch in range(1, self.last_epoch + 1):
            cur_lr = cur_lr * self.lr_lambda(epoch)
        return cur_lr
1649 1650 1651 1652


class OneCycleLR(LRScheduler):
    r"""
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
    Sets the learning rate according to the one cycle learning rate scheduler.
    The scheduler adjusts the learning rate from an initial learning rate to the maximum learning rate and then
    from that maximum learning rate to the minimum learning rate, which is much less than the initial learning rate.

    It has been proposed in `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates <https://arxiv.org/abs/1708.07120>`_.

    Please note that the default behaviour of this scheduler follows the fastai implementation of one cycle,
    which claims that “unpublished work has shown even better results by using only two phases”.
    If you want the behaviour of this scheduler to be consistent with the paper, please set ``three_phase=True`` .

    Also note that you should update learning rate each step.

    Args:
1667
        max_learning_rate (float): The maximum learning rate. It is a python float number. Functionally, it defines the initial learning rate by ``divide_factor`` .
1668
        total_steps (int): Number of total training steps.
1669
        divide_factor (float, optional): Initial learning rate will be determined by initial_learning_rate = max_learning_rate / divide_factor. Default: 25.
1670 1671
        end_learning_rate (float, optional): The minimum learning rate during training, it should be much less than initial learning rate.
        phase_pct (float): The percentage of total steps which used to increasing learning rate. Default: 0.3.
1672
        anneal_strategy (str, optional): Strategy of adjusting learning rate.'cos' for cosine annealing, 'linear' for linear annealing. Default: 'cos'.
1673
        three_phase (bool, optional): Whether to use three phase.
1674

1675
            If ``True``:
1676

1677 1678 1679
                1. The learning rate will first increase from initial learning rate to maximum learning rate.
                2. Then it will decrease to initial learning rate. Number of step in this phase is the same as the one in first phase.
                3. Finally, it will decrease to minimum learning rate which is much less than initial learning rate.
1680

1681
            If ``False``:
1682

1683 1684
                1. The learning rate will increase to maximum learning rate.
                2. Then it will directly decrease to minimum learning rate.
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``OneCycleLR`` instance to schedule learning rate.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
1737

1738 1739
    """

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    def __init__(
        self,
        max_learning_rate,
        total_steps,
        divide_factor=25.0,
        end_learning_rate=0.0001,
        phase_pct=0.3,
        anneal_strategy='cos',
        three_phase=False,
        last_epoch=-1,
        verbose=False,
    ):
1752 1753 1754
        # Check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
1755 1756 1757 1758
                "'max_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(max_learning_rate)
                )
            )
1759 1760 1761 1762 1763 1764
        if max_learning_rate < 0:
            raise ValueError("'max_learning_rate' must be a positive integer.")

        # Check type and value of end_learning_rate
        if not isinstance(end_learning_rate, (float, int)):
            raise TypeError(
1765 1766 1767 1768
                "'end_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(end_learning_rate)
                )
            )
1769 1770 1771 1772 1773
        if end_learning_rate < 0:
            raise ValueError("'end_learning_rate' must be a positive integer.")

        # Check type and value of total_steps
        if not isinstance(total_steps, int):
1774 1775
            raise TypeError(
                "'total_step' must be 'int', but received {}".format(
1776 1777 1778
                    type(total_steps)
                )
            )
1779 1780 1781 1782 1783 1784
        if total_steps <= 0:
            raise ValueError("'total_step' must be a positive integer.")
        self.total_steps = total_steps

        # Check type and value of pac_start
        if not isinstance(phase_pct, float):
1785 1786
            raise TypeError(
                "'phase_pct' must be 'float', but received {}".format(
1787 1788 1789
                    type(phase_pct)
                )
            )
1790 1791 1792
        if phase_pct < 0 or phase_pct > 1:
            raise ValueError(
                "'phase_pct' must be between 0 and 1, but received {}".format(
1793 1794 1795
                    phase_pct
                )
            )
1796 1797 1798 1799

        # Check type and value of divide_factor
        if not isinstance(divide_factor, (float, int)):
            raise TypeError(
1800 1801 1802 1803
                "'divide_factor' must be 'float' or 'int', but received {}".format(
                    type(divide_factor)
                )
            )
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

        initial_lr = max_learning_rate / float(divide_factor)
        min_lr = float(end_learning_rate)

        if three_phase:
            if phase_pct >= 0.5:
                raise ValueError(
                    "When three_phase is True, 'phase_pct' must be less than 0.5"
                )
            # start step and end step of each phase.
            self._step_config = [
                0,
                phase_pct * self.total_steps - 1,
                2 * phase_pct * self.total_steps - 2,
                self.total_steps - 1,
                self.total_steps - 1,  # for the last step.
            ]
            # step size of each phase.
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[3] - self._step_config[2],
1826 1827
                self._step_config[3]
                - self._step_config[2],  # for the last step.
1828 1829 1830
            ]
            # start lr and end lr of each phase.
            self._lr_config = [
1831 1832 1833 1834
                initial_lr,
                max_learning_rate,
                initial_lr,
                min_lr,
1835 1836 1837
            ]
        else:
            self._step_config = [
1838 1839 1840 1841
                0,
                phase_pct * self.total_steps - 1,
                self.total_steps - 1,
                self.total_steps - 1,
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
            ]
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[2] - self._step_config[1],
            ]
            self._lr_config = [initial_lr, max_learning_rate, min_lr]

        # Check anneal_strategy
        if anneal_strategy == 'cos':
            self.anneal_func = self._cos_annealing
        elif anneal_strategy == 'linear':
            self.anneal_func = self._linear_annealing
        else:
            raise ValueError(
1857 1858 1859 1860
                "'anneal_strategy' must by one of 'cos' or 'linear', but received {}".format(
                    anneal_strategy
                )
            )
1861
        super().__init__(initial_lr, last_epoch, verbose)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    def _cos_annealing(self, start_lr, end_lr, pct):
        cos_out = math.cos(math.pi * pct) + 1
        return end_lr + (start_lr - end_lr) / 2.0 * cos_out

    def _linear_annealing(self, start_lr, end_lr, pct):
        return (end_lr - start_lr) * pct + start_lr

    def get_lr(self):
        current_step = self.last_epoch

        if current_step > self.total_steps:
            raise ValueError(
1875 1876 1877 1878
                "Tried to step {} times. However the number of total steps is {}".format(
                    current_step, self.total_steps
                )
            )
1879

1880
        for (i, (end_step, step_size)) in enumerate(
1881 1882
            zip(self._step_config[1:], self._steps_size)
        ):
1883 1884 1885 1886
            # i == len(self._lr_config) - 2 catch the last step, otherwise it will return None.
            if current_step <= end_step or i == len(self._lr_config) - 2:
                # self._step_config[i] means start step of a phase.
                percentage = (current_step - self._step_config[i]) / step_size
1887 1888 1889
                return self.anneal_func(
                    self._lr_config[i], self._lr_config[i + 1], percentage
                )
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932


class CyclicLR(LRScheduler):
    r"""
    Set the learning rate according to the cyclic learning rate (CLR) scheduler.
    The scheduler regards the process of learning rate adjustment as one cycle after another.
    It cycles the learning rate between two boundaries with a constant frequency.
    The distance between the two boundaries can be scaled on a per-iteration or per-cycle basis.

    It has been proposed in `Cyclic Learning Rates for Training Neural Networks <https://arxiv.org/abs/1506.01186>`_.

    According to the paper, the cyclic learning rate schedule has three build-in scale methods:

    * "triangular": A basic triangular cycle without any amplitude scaling.
    * "triangular2": A basic triangular cycle that reduce initial amplitude by half each cycle.
    * "exp_range": A cycle that scales initial amplitude by scale function which is defined as :math:`gamma^{iterations}` .

    The initial amplitude is defined as max_learning_rate - base_learning_rate.
    Also note that you should update learning rate each step.

    Args:
        base_learning_rate (float): Initial learning rate, which is the lower boundary in the cycle. The paper recommends
            that set the base_learning_rate to 1/3 or 1/4 of max_learning_rate.
        max_learning_rate (float): Maximum learning rate in the cycle. It defines the cycle amplitude as above.
            Since there is some scaling operation during process of learning rate adjustment,
            max_learning_rate may not actually be reached.
        step_size_up (int): Number of training steps, which is used to increase learning rate in a cycle.
            The step size of one cycle will be defined by step_size_up + step_size_down. According to the paper, step
            size should be set as at least 3 or 4 times steps in one epoch.
        step_size_down (int, optional): Number of training steps, which is used to decrease learning rate in a cycle.
            If not specified, it's value will initialize to `` step_size_up `` . Default: None
        mode (str, optional): one of 'triangular', 'triangular2' or 'exp_range'.
            If scale_fn is specified, this argument will be ignored. Default: 'triangular'
        exp_gamma (float): Constant in 'exp_range' scaling function: exp_gamma**iterations. Used only when mode = 'exp_range'. Default: 1.0
        scale_fn (function, optional): A custom scaling function, which is used to replace three build-in methods.
            It should only have one argument. For all x >= 0, 0 <= scale_fn(x) <= 1.
            If specified, then 'mode' will be ignored. Default: None
        scale_mode (str, optional): One of 'cycle' or 'iterations'. Defines whether scale_fn is evaluated on cycle
            number or cycle iterations (total iterations since start of training). Default: 'cycle'
        last_epoch (int, optional): The index of last epoch. Can be set to restart training.Default: -1, means initial learning rate.
        verbose: (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
1933
        ``CyclicLR`` instance to schedule learning rate.
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5, max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                    max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
    """

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    def __init__(
        self,
        base_learning_rate,
        max_learning_rate,
        step_size_up,
        step_size_down=None,
        mode='triangular',
        exp_gamma=1.0,
        scale_fn=None,
        scale_mode='cycle',
        last_epoch=-1,
        verbose=False,
    ):
1996 1997 1998
        # check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
1999 2000 2001 2002
                "'max_learning_rate' must be 'float' or 'int', but received {}".format(
                    type(max_learning_rate)
                )
            )
2003 2004
        if max_learning_rate < 0:
            raise ValueError(
2005 2006 2007 2008
                "'max_learning_rate' must be a positive integer, but received {}".format(
                    max_learning_rate
                )
            )
2009 2010 2011 2012

        # check type and value of step_size_up
        if not isinstance(step_size_up, int):
            raise TypeError(
2013 2014 2015 2016
                "The type of 'step_size_up' must be int, but received {}".format(
                    type(step_size_up)
                )
            )
2017 2018
        if step_size_up <= 0:
            raise ValueError(
2019 2020 2021 2022
                "'step_size_up' must be a positive integer, but received {}".format(
                    step_size_up
                )
            )
2023 2024 2025 2026 2027

        # check type and value of step_size_down
        if step_size_down is not None:
            if not isinstance(step_size_down, int):
                raise TypeError(
2028 2029 2030 2031
                    "The type of 'step_size_down' must be int, but received {}".format(
                        type(step_size_down)
                    )
                )
2032 2033
            if step_size_down <= 0:
                raise ValueError(
2034 2035 2036 2037
                    "'step_size_down' must be a positive integer, but received {}".format(
                        step_size_down
                    )
                )
2038 2039 2040 2041 2042

        # check type of exp_gamma
        if not isinstance(exp_gamma, float):
            raise TypeError(
                "The type of 'exp_gamma' must be float, but received {}".format(
2043 2044 2045
                    type(exp_gamma)
                )
            )
2046 2047

        step_size_up = float(step_size_up)
2048 2049 2050 2051 2052
        step_size_down = (
            float(step_size_down)
            if step_size_down is not None
            else step_size_up
        )
2053 2054 2055 2056 2057 2058

        self.cycle_size = step_size_up + step_size_down
        self.step_up_pct = step_size_up / self.cycle_size
        self.max_lr = float(max_learning_rate)
        self.amplitude = self.max_lr - base_learning_rate

2059 2060 2061 2062
        if (
            mode not in ['triangular', 'triangular2', 'exp_range']
            and scale_fn is None
        ):
2063 2064 2065 2066 2067
            raise ValueError(
                "'mode' is invalid and 'scale_fn' is not specified, make sure one of 'mode' or 'scale_fn' is valid"
            )
        if scale_mode not in ['cycle', 'iterations']:
            raise ValueError(
2068 2069
                "'scale_mode' must be one of 'cycle' or 'iterations"
            )
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

        self.mode = mode
        self.gamma = exp_gamma  # only for exp_range mode

        if scale_fn is None:
            if self.mode == 'triangular':
                self.scale_fn = self._triangular_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'triangular2':
                self.scale_fn = self._triangular2_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'exp_range':
                self.scale_fn = self._exp_range_scale_fn
                self.scale_mode = 'iterations'
        else:
            self.scale_fn = scale_fn
            self.scale_mode = scale_mode
        super().__init__(base_learning_rate, last_epoch, verbose)

    def _triangular_scale_fn(self, x):
2090
        return 1.0
2091 2092

    def _triangular2_scale_fn(self, x):
2093
        return 1 / (2.0 ** (x - 1))
2094 2095 2096 2097 2098 2099 2100 2101

    def _exp_range_scale_fn(self, x):
        return self.gamma**x

    def get_lr(self):
        iterations = self.last_epoch

        cycle = 1 + iterations // self.cycle_size
2102
        pct_per_cycle = 1.0 + iterations / self.cycle_size - cycle
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

        if pct_per_cycle <= self.step_up_pct:
            scale_factor = pct_per_cycle / self.step_up_pct
        else:
            scale_factor = (1 - pct_per_cycle) / (1 - self.step_up_pct)

        base_height = self.amplitude * scale_factor

        lr = self.base_lr + base_height * self.scale_fn(eval(self.scale_mode))

        return lr