ops.py 96.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from ..fluid.layer_helper import LayerHelper
17
from ..fluid.data_feeder import check_type, check_variable_and_dtype
18
from ..fluid.layers import nn, utils
N
Nyakku Shigure 已提交
19
from ..nn import Layer, Conv2D, Sequential, ReLU, BatchNorm2D
20
from ..fluid.initializer import Normal
21
from ..fluid.framework import (
22
    Variable,
23 24 25 26
    _non_static_mode,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
27
from paddle import _C_ops, _legacy_C_ops
Y
YuanRisheng 已提交
28
from ..framework import _current_expected_place
29

30 31 32
__all__ = [  # noqa
    'yolo_loss',
    'yolo_box',
33 34
    'prior_box',
    'box_coder',
35 36 37 38 39 40 41 42 43 44 45 46 47 48
    'deform_conv2d',
    'DeformConv2D',
    'distribute_fpn_proposals',
    'generate_proposals',
    'read_file',
    'decode_jpeg',
    'roi_pool',
    'RoIPool',
    'psroi_pool',
    'PSRoIPool',
    'roi_align',
    'RoIAlign',
    'nms',
    'matrix_nms',
49
]
50 51


52 53 54 55 56 57 58 59 60 61 62 63 64 65
def yolo_loss(
    x,
    gt_box,
    gt_label,
    anchors,
    anchor_mask,
    class_num,
    ignore_thresh,
    downsample_ratio,
    gt_score=None,
    use_label_smooth=True,
    name=None,
    scale_x_y=1.0,
):
66
    r"""
67 68 69

    This operator generates YOLOv3 loss based on given predict result and ground
    truth boxes.
70

71
    The output of previous network is in shape [N, C, H, W], while H and W
72
    should be the same, H and W specify the grid size, each grid point predict
73 74
    given number bounding boxes, this given number, which following will be represented as S,
    is specified by the number of anchor clusters in each scale. In the second dimension(the channel
75 76 77
    dimension), C should be equal to S * (class_num + 5), class_num is the object
    category number of source dataset(such as 80 in coco dataset), so in the
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    also includes confidence score of the box and class one-hot key of each anchor box.

    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
    should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    In the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    As for confidence score, it is the logistic regression value of IoU between
100 101
    anchor boxes and ground truth boxes, the score of the anchor box which has
    the max IoU should be 1, and if the anchor box has IoU bigger than ignore
102 103 104
    thresh, the confidence score loss of this anchor box will be ignored.

    Therefore, the YOLOv3 loss consists of three major parts: box location loss,
105 106
    objectness loss and classification loss. The L1 loss is used for
    box coordinates (w, h), sigmoid cross entropy loss is used for box
107 108
    coordinates (x, y), objectness loss and classification loss.

109
    Each groud truth box finds a best matching anchor box in all anchors.
110 111 112 113
    Prediction of this anchor box will incur all three parts of losses, and
    prediction of anchor boxes with no GT box matched will only incur objectness
    loss.

114
    In order to trade off box coordinate losses between big boxes and small
115 116 117 118 119 120 121 122 123 124
    boxes, box coordinate losses will be mutiplied by scale weight, which is
    calculated as follows.

    $$
    weight_{box} = 2.0 - t_w * t_h
    $$

    Final loss will be represented as follows.

    $$
S
sunzhongkai588 已提交
125
    loss = (loss_{xy} + loss_{wh}) * weight_{box} + loss_{conf} + loss_{class}
126 127 128
    $$

    While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
129
    target will be smoothed when calculating classification loss, target of
130 131 132
    positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
    negetive samples will be smoothed to :math:`1.0 / class\_num`.

133 134
    While :attr:`gt_score` is given, which means the mixup score of ground truth
    boxes, all losses incured by a ground truth box will be multiplied by its
135 136 137 138 139 140 141
    mixup score.

    Args:
        x (Tensor): The input tensor of YOLOv3 loss operator, This is a 4-D
                      tensor with shape of [N, C, H, W]. H and W should be same,
                      and the second dimension(C) stores box locations, confidence
                      score and classification one-hot keys of each anchor box.
142
                      The data type is float32 or float64.
143
        gt_box (Tensor): groud truth boxes, should be in shape of [N, B, 4],
144
                          in the third dimension, x, y, w, h should be stored.
145
                          x,y is the center coordinate of boxes, w, h are the
146
                          width and height, x, y, w, h should be divided by
147
                          input image height to scale to [0, 1].
148 149
                          N is the batch number and B is the max box number in
                          an image.The data type is float32 or float64.
150
        gt_label (Tensor): class id of ground truth boxes, should be in shape
151
                            of [N, B].The data type is int32.
152 153 154 155 156 157 158 159
        anchors (list|tuple): The anchor width and height, it will be parsed
                              pair by pair.
        anchor_mask (list|tuple): The mask index of anchors used in current
                                  YOLOv3 loss calculation.
        class_num (int): The number of classes.
        ignore_thresh (float): The ignore threshold to ignore confidence loss.
        downsample_ratio (int): The downsample ratio from network input to YOLOv3
                                loss input, so 32, 16, 8 should be set for the
160 161 162
                                first, second, and thrid YOLOv3 loss operators.
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
163 164 165
                       please refer to :ref:`api_guide_Name`
        gt_score (Tensor): mixup score of ground truth boxes, should be in shape
                            of [N, B]. Default None.
166
        use_label_smooth (bool): Whether to use label smooth. Default True.
167 168 169 170 171 172 173 174 175 176 177
        scale_x_y (float): Scale the center point of decoded bounding box.
                           Default 1.0

    Returns:
        Tensor: A 1-D tensor with shape [N], the value of yolov3 loss

    Examples:
      .. code-block:: python

          import paddle

178 179 180
          x = paddle.rand([2, 14, 8, 8]).astype('float32')
          gt_box = paddle.rand([2, 10, 4]).astype('float32')
          gt_label = paddle.rand([2, 10]).astype('int32')
181 182 183 184 185 186 187 188 189 190 191 192 193 194


          loss = paddle.vision.ops.yolo_loss(x,
                                             gt_box=gt_box,
                                             gt_label=gt_label,
                                             anchors=[10, 13, 16, 30],
                                             anchor_mask=[0, 1],
                                             class_num=2,
                                             ignore_thresh=0.7,
                                             downsample_ratio=8,
                                             use_label_smooth=True,
                                             scale_x_y=1.)
    """

195
    if in_dygraph_mode():
196
        loss, _, _ = _C_ops.yolo_loss(
197 198 199 200 201 202 203 204 205 206 207 208
            x,
            gt_box,
            gt_label,
            gt_score,
            anchors,
            anchor_mask,
            class_num,
            ignore_thresh,
            downsample_ratio,
            use_label_smooth,
            scale_x_y,
        )
209 210
        return loss

211
    if _non_static_mode():
212
        loss, _, _ = _legacy_C_ops.yolov3_loss(
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            x,
            gt_box,
            gt_label,
            gt_score,
            'anchors',
            anchors,
            'anchor_mask',
            anchor_mask,
            'class_num',
            class_num,
            'ignore_thresh',
            ignore_thresh,
            'downsample_ratio',
            downsample_ratio,
            'use_label_smooth',
            use_label_smooth,
            'scale_x_y',
            scale_x_y,
        )
232 233 234 235 236
        return loss

    helper = LayerHelper('yolov3_loss', **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_loss')
237 238 239
    check_variable_and_dtype(
        gt_box, 'gt_box', ['float32', 'float64'], 'yolo_loss'
    )
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    check_variable_and_dtype(gt_label, 'gt_label', 'int32', 'yolo_loss')
    check_type(anchors, 'anchors', (list, tuple), 'yolo_loss')
    check_type(anchor_mask, 'anchor_mask', (list, tuple), 'yolo_loss')
    check_type(class_num, 'class_num', int, 'yolo_loss')
    check_type(ignore_thresh, 'ignore_thresh', float, 'yolo_loss')
    check_type(use_label_smooth, 'use_label_smooth', bool, 'yolo_loss')

    loss = helper.create_variable_for_type_inference(dtype=x.dtype)

    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

    inputs = {
        "X": x,
        "GTBox": gt_box,
        "GTLabel": gt_label,
    }
    if gt_score is not None:
        inputs["GTScore"] = gt_score

    attrs = {
        "anchors": anchors,
        "anchor_mask": anchor_mask,
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
        "downsample_ratio": downsample_ratio,
        "use_label_smooth": use_label_smooth,
        "scale_x_y": scale_x_y,
    }

270 271 272 273 274 275 276 277 278 279
    helper.append_op(
        type='yolov3_loss',
        inputs=inputs,
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask,
        },
        attrs=attrs,
    )
280 281 282
    return loss


283 284 285 286 287 288 289 290 291 292 293 294 295
def yolo_box(
    x,
    img_size,
    anchors,
    class_num,
    conf_thresh,
    downsample_ratio,
    clip_bbox=True,
    name=None,
    scale_x_y=1.0,
    iou_aware=False,
    iou_aware_factor=0.5,
):
296
    r"""
297 298

    This operator generates YOLO detection boxes from output of YOLOv3 network.
299

300
    The output of previous network is in shape [N, C, H, W], while H and W
301
    should be the same, H and W specify the grid size, each grid point predict
302 303
    given number boxes, this given number, which following will be represented as S,
    is specified by the number of anchors. In the second dimension(the channel
304 305
    dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false,
    otherwise C should be equal to S * (6 + class_num). class_num is the object
306 307 308
    category number of source dataset(such as 80 in coco dataset), so the
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
    also includes confidence score of the box and class one-hot key of each anchor
309 310
    box.

311
    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    predictions should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    in the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    The logistic regression value of the 5th channel of each anchor prediction boxes
    represents the confidence score of each prediction box, and the logistic
332
    regression value of the last :attr:`class_num` channels of each anchor prediction
333
    boxes represents the classifcation scores. Boxes with confidence scores less than
334
    :attr:`conf_thresh` should be ignored, and box final scores is the product of
335 336 337 338 339 340
    confidence scores and classification scores.

    $$
    score_{pred} = score_{conf} * score_{class}
    $$

341 342 343 344 345
    where the confidence scores follow the formula bellow

    .. math::

        score_{conf} = \begin{case}
346
                         obj, \text{if } iou_aware == false \\
347 348 349
                         obj^{1 - iou_aware_factor} * iou^{iou_aware_factor}, \text{otherwise}
                       \end{case}

350 351 352 353 354
    Args:
        x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with
                      shape of [N, C, H, W]. The second dimension(C) stores box
                      locations, confidence score and classification one-hot keys
                      of each anchor box. Generally, X should be the output of
355
                      YOLOv3 network. The data type is float32 or float64.
356 357 358
        img_size (Tensor): The image size tensor of YoloBox operator, This is a
                           2-D tensor with shape of [N, 2]. This tensor holds
                           height and width of each input image used for resizing
359
                           output box in input image scale. The data type is int32.
360 361 362 363 364 365 366 367 368 369 370
        anchors (list|tuple): The anchor width and height, it will be parsed pair
                              by pair.
        class_num (int): The number of classes.
        conf_thresh (float): The confidence scores threshold of detection boxes.
                             Boxes with confidence scores under threshold should
                             be ignored.
        downsample_ratio (int): The downsample ratio from network input to
                                :attr:`yolo_box` operator input, so 32, 16, 8
                                should be set for the first, second, and thrid
                                :attr:`yolo_box` layer.
        clip_bbox (bool): Whether clip output bonding box in :attr:`img_size`
371
                          boundary. Default true.
372 373
        scale_x_y (float): Scale the center point of decoded bounding box.
                           Default 1.0
374 375
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
376
                       please refer to :ref:`api_guide_Name`
377 378
        iou_aware (bool): Whether use iou aware. Default false
        iou_aware_factor (float): iou aware factor. Default 0.5
379 380 381

    Returns:
        Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
382
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
383 384 385 386 387 388 389 390
        scores of boxes.

    Examples:

    .. code-block:: python

        import paddle

391 392
        x = paddle.rand([2, 14, 8, 8]).astype('float32')
        img_size = paddle.ones((2, 2)).astype('int32')
393 394 395 396 397 398 399 400 401 402

        boxes, scores = paddle.vision.ops.yolo_box(x,
                                                   img_size=img_size,
                                                   anchors=[10, 13, 16, 30],
                                                   class_num=2,
                                                   conf_thresh=0.01,
                                                   downsample_ratio=8,
                                                   clip_bbox=True,
                                                   scale_x_y=1.)
    """
H
hong 已提交
403
    if in_dygraph_mode():
404 405 406 407 408 409 410 411 412 413 414 415
        boxes, scores = _C_ops.yolo_box(
            x,
            img_size,
            anchors,
            class_num,
            conf_thresh,
            downsample_ratio,
            clip_bbox,
            scale_x_y,
            iou_aware,
            iou_aware_factor,
        )
H
hong 已提交
416 417
        return boxes, scores

J
Jiabin Yang 已提交
418
    if _non_static_mode():
419
        boxes, scores = _legacy_C_ops.yolo_box(
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            x,
            img_size,
            'anchors',
            anchors,
            'class_num',
            class_num,
            'conf_thresh',
            conf_thresh,
            'downsample_ratio',
            downsample_ratio,
            'clip_bbox',
            clip_bbox,
            'scale_x_y',
            scale_x_y,
            'iou_aware',
            iou_aware,
            'iou_aware_factor',
            iou_aware_factor,
        )
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        return boxes, scores

    helper = LayerHelper('yolo_box', **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_box')
    check_variable_and_dtype(img_size, 'img_size', 'int32', 'yolo_box')
    check_type(anchors, 'anchors', (list, tuple), 'yolo_box')
    check_type(conf_thresh, 'conf_thresh', float, 'yolo_box')

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
        "conf_thresh": conf_thresh,
        "downsample_ratio": downsample_ratio,
        "clip_bbox": clip_bbox,
        "scale_x_y": scale_x_y,
458
        "iou_aware": iou_aware,
459
        "iou_aware_factor": iou_aware_factor,
460 461
    }

462 463 464 465 466 467 468 469 470 471 472 473
    helper.append_op(
        type='yolo_box',
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs,
    )
474
    return boxes, scores
475 476


477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
def prior_box(
    input,
    image,
    min_sizes,
    max_sizes=None,
    aspect_ratios=[1.0],
    variance=[0.1, 0.1, 0.2, 0.2],
    flip=False,
    clip=False,
    steps=[0.0, 0.0],
    offset=0.5,
    min_max_aspect_ratios_order=False,
    name=None,
):
    r"""

    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.

    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input (Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
       image (Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes (list|tuple|float): the min sizes of generated prior boxes.
       max_sizes (list|tuple|None, optional): the max sizes of generated prior boxes.
            Default: None, means [] and will not be used.
       aspect_ratios (list|tuple|float, optional): the aspect ratios of generated
            prior boxes. Default: [1.0].
       variance (list|tuple, optional): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip (bool): Whether to flip aspect ratios. Default:False.
       clip (bool): Whether to clip out-of-boundary boxes. Default: False.
       steps (list|tuple, optional): Prior boxes steps across width and height, If
            steps[0] equals to 0.0 or steps[1] equals to 0.0, the prior boxes steps across
            height or weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset (float, optional)): Prior boxes center offset. Default: 0.5
       min_max_aspect_ratios_order (bool, optional): If set True, the output prior box is
            in order of [min, max, aspect_ratios], which is consistent with
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
       name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: the output prior boxes and the expanded variances of PriorBox.
            The prior boxes is a 4-D tensor, the layout is [H, W, num_priors, 4],
            num_priors is the total box count of each position of input.
            The expanded variances is a 4-D tensor, same shape as the prior boxes.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand((1, 3, 6, 9), dtype=paddle.float32)
            image = paddle.rand((1, 3, 9, 12), dtype=paddle.float32)

            box, var = paddle.vision.ops.prior_box(
                input=input,
                image=image,
                min_sizes=[2.0, 4.0],
                clip=True,
                flip=True)

    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box'
    )

    def _is_list_or_tuple_(data):
        return isinstance(data, list) or isinstance(data, tuple)

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not _is_list_or_tuple_(steps):
        steps = [steps]
    if not len(steps) == 2:
        raise ValueError('steps should be (step_w, step_h)')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

    cur_max_sizes = None
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
        cur_max_sizes = max_sizes

    if in_dygraph_mode():
        step_w, step_h = steps
578
        if max_sizes is None:
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
            max_sizes = []
        box, var = _C_ops.prior_box(
            input,
            image,
            min_sizes,
            aspect_ratios,
            variance,
            max_sizes,
            flip,
            clip,
            step_w,
            step_h,
            offset,
            min_max_aspect_ratios_order,
        )
        return box, var

    if _in_legacy_dygraph():
        attrs = (
            'min_sizes',
            min_sizes,
            'aspect_ratios',
            aspect_ratios,
            'variances',
            variance,
            'flip',
            flip,
            'clip',
            clip,
            'step_w',
            steps[0],
            'step_h',
            steps[1],
            'offset',
            offset,
            'min_max_aspect_ratios_order',
            min_max_aspect_ratios_order,
        )
        if cur_max_sizes is not None:
            attrs += ('max_sizes', cur_max_sizes)
        box, var = _legacy_C_ops.prior_box(input, image, *attrs)
        return box, var
    else:
        attrs = {
            'min_sizes': min_sizes,
            'aspect_ratios': aspect_ratios,
            'variances': variance,
            'flip': flip,
            'clip': clip,
            'step_w': steps[0],
            'step_h': steps[1],
            'offset': offset,
            'min_max_aspect_ratios_order': min_max_aspect_ratios_order,
        }
        if cur_max_sizes is not None:
            attrs['max_sizes'] = cur_max_sizes

        box = helper.create_variable_for_type_inference(dtype)
        var = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input, "Image": image},
            outputs={"Boxes": box, "Variances": var},
            attrs=attrs,
        )
        box.stop_gradient = True
        var.stop_gradient = True
        return box, var


def box_coder(
    prior_box,
    prior_box_var,
    target_box,
    code_type="encode_center_size",
    box_normalized=True,
    axis=0,
    name=None,
):
    r"""
    Encode/Decode the target bounding box with the priorbox information.

    The Encoding schema described below:

    .. math::

        ox &= (tx - px) / pw / pxv

        oy &= (ty - py) / ph / pyv

        ow &= log(abs(tw / pw)) / pwv

        oh &= log(abs(th / ph)) / phv

    The Decoding schema described below:

    .. math::

        ox &= (pw * pxv * tx * + px) - tw / 2

        oy &= (ph * pyv * ty * + py) - th / 2

        ow &= exp(pwv * tw) * pw + tw / 2

        oh &= exp(phv * th) * ph + th / 2

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
    the priorbox's (anchor) center coordinates, width and height. `pxv`,
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
    `ow`, `oh` denote the encoded/decoded coordinates, width and height.
    During Box Decoding, two modes for broadcast are supported. Say target
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
    [M, 4]. Then prior box will broadcast to target box along the
    assigned axis.

    Args:
        prior_box (Tensor): Box list prior_box is a 2-D Tensor with shape
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system.
            [xmax, ymax] is the right bottom coordinate of the anchor box.
        prior_box_var (List|Tensor|None): prior_box_var supports three types
            of input. One is Tensor with shape [M, 4] which holds M group and
            data type is float32 or float64. The second is list consist of
            4 elements shared by all boxes and data type is float32 or float64.
            Other is None and not involved in calculation.
        target_box (Tensor): This input can be a 2-D LoDTensor with shape
            [N, 4] when code_type is 'encode_center_size'. This input also can
            be a 3-D Tensor with shape [N, M, 4] when code_type is
            'decode_center_size'. Each box is represented as
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
        code_type (str, optional): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size`
            by default.
        box_normalized (bool, optional): Whether treat the priorbox as a normalized box.
            Set true by default.
        axis (int, optional): Which axis in PriorBox to broadcast for box decode,
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is
            `decode_center_size`. Set 0 by default.
        name (str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

    Returns:
        Tensor: output boxes, when code_type is 'encode_center_size', the
            output tensor of box_coder_op with shape [N, M, 4] representing the
            result of N target boxes encoded with M Prior boxes and variances.
            When code_type is 'decode_center_size', N represents the batch size
            and M represents the number of decoded boxes.

    Examples:
        .. code-block:: python

            import paddle

            # For encode
            prior_box_encode = paddle.rand((80, 4), dtype=paddle.float32)
            prior_box_var_encode = paddle.rand((80, 4), dtype=paddle.float32)
            target_box_encode = paddle.rand((20, 4), dtype=paddle.float32)
            output_encode = paddle.vision.ops.box_coder(
                prior_box=prior_box_encode,
                prior_box_var=prior_box_var_encode,
                target_box=target_box_encode,
                code_type="encode_center_size")

            # For decode
            prior_box_decode = paddle.rand((80, 4), dtype=paddle.float32)
            prior_box_var_decode = paddle.rand((80, 4), dtype=paddle.float32)
            target_box_decode = paddle.rand((20, 80, 4), dtype=paddle.float32)
            output_decode = paddle.vision.ops.box_coder(
                prior_box=prior_box_decode,
                prior_box_var=prior_box_var_decode,
                target_box=target_box_decode,
                code_type="decode_center_size",
                box_normalized=False)

    """
    check_variable_and_dtype(
        prior_box, 'prior_box', ['float32', 'float64'], 'box_coder'
    )
    check_variable_and_dtype(
        target_box, 'target_box', ['float32', 'float64'], 'box_coder'
    )

    if in_dygraph_mode():
        if isinstance(prior_box_var, Variable):
            output_box = _C_ops.box_coder(
                prior_box,
                prior_box_var,
                target_box,
                code_type,
                box_normalized,
                axis,
                [],
            )
        elif isinstance(prior_box_var, list):
            output_box = _C_ops.box_coder(
                prior_box,
                None,
                target_box,
                code_type,
                box_normalized,
                axis,
                prior_box_var,
            )
        else:
            raise TypeError("Input prior_box_var must be Variable or list")
        return output_box

    if _in_legacy_dygraph():
        if isinstance(prior_box_var, Variable):
            output_box = _legacy_C_ops.box_coder(
                prior_box,
                prior_box_var,
                target_box,
                "code_type",
                code_type,
                "box_normalized",
                box_normalized,
                "axis",
                axis,
            )
        elif isinstance(prior_box_var, list):
            output_box = _legacy_C_ops.box_coder(
                prior_box,
                None,
                target_box,
                "code_type",
                code_type,
                "box_normalized",
                box_normalized,
                "axis",
                axis,
                "variance",
                prior_box_var,
            )
        else:
            raise TypeError("Input prior_box_var must be Variable or list")
        return output_box
    else:
        helper = LayerHelper("box_coder", **locals())

        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype
        )

        inputs = {"PriorBox": prior_box, "TargetBox": target_box}
        attrs = {
            "code_type": code_type,
            "box_normalized": box_normalized,
            "axis": axis,
        }
        if isinstance(prior_box_var, Variable):
            inputs['PriorBoxVar'] = prior_box_var
        elif isinstance(prior_box_var, list):
            attrs['variance'] = prior_box_var
        else:
            raise TypeError("Input prior_box_var must be Variable or list")
        helper.append_op(
            type="box_coder",
            inputs=inputs,
            attrs=attrs,
            outputs={"OutputBox": output_box},
        )
        return output_box


850 851 852 853 854 855 856 857 858 859 860 861 862
def deform_conv2d(
    x,
    offset,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    deformable_groups=1,
    groups=1,
    mask=None,
    name=None,
):
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width.
        bias (Tensor, optional): The bias with shape [M,].
915
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
916 917
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
918
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
919 920
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
921
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
922 923
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
924 925
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
926 927 928 929 930 931 932 933 934 935 936 937 938
        groups (int, optonal): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        mask (Tensor, optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        Tensor: The tensor variable storing the deformable convolution \
                  result. A Tensor with type float32, float64.
939

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight, mask=mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    use_deform_conv2d_v1 = True if mask is None else False

981
    if in_dygraph_mode():
982 983 984 985 986 987 988 989 990 991 992 993
        pre_bias = _C_ops.deformable_conv(
            x,
            offset,
            weight,
            mask,
            stride,
            padding,
            dilation,
            deformable_groups,
            groups,
            1,
        )
994 995 996 997 998
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
    elif _in_legacy_dygraph():
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'deformable_groups',
            deformable_groups,
            'groups',
            groups,
            'im2col_step',
            1,
        )
1013 1014
        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
1015 1016 1017
            pre_bias = getattr(_legacy_C_ops, op_type)(
                x, offset, weight, *attrs
            )
1018 1019
        else:
            op_type = 'deformable_conv'
1020 1021 1022
            pre_bias = getattr(_legacy_C_ops, op_type)(
                x, offset, mask, weight, *attrs
            )
1023 1024 1025 1026 1027
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
    else:
1028 1029 1030 1031 1032 1033
        check_variable_and_dtype(
            x, "x", ['float32', 'float64'], 'deform_conv2d'
        )
        check_variable_and_dtype(
            offset, "offset", ['float32', 'float64'], 'deform_conv2d'
        )
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        num_channels = x.shape[1]

        helper = LayerHelper('deformable_conv', **locals())
        dtype = helper.input_dtype()

        stride = utils.convert_to_list(stride, 2, 'stride')
        padding = utils.convert_to_list(padding, 2, 'padding')
        dilation = utils.convert_to_list(dilation, 2, 'dilation')

        pre_bias = helper.create_variable_for_type_inference(dtype)

        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
            }
        else:
            op_type = 'deformable_conv'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
                'Mask': mask,
            }

        outputs = {"Output": pre_bias}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
1068
            'deformable_groups': deformable_groups,
1069 1070
            'im2col_step': 1,
        }
1071 1072 1073
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1074 1075 1076

        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
1077 1078 1079 1080 1081 1082
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': 1},
            )
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        else:
            out = pre_bias
    return out


class DeformConv2D(Layer):
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

S
sunzhongkai588 已提交
1129 1130
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
1131 1132 1133 1134 1135 1136


    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple): The size of the convolving kernel.
1137
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
1138 1139
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
1140
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
1141 1142
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
1143
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1144 1145
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
1146 1147
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
1148 1149 1150 1151 1152 1153 1154 1155 1156
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
S
sunzhongkai588 已提交
1157
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - offset: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`
        - mask: :math:`(N, H_f * W_f, H_{out}, W_{out})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
1171

1172
        Where
1173

1174
        ..  math::
S
sunzhongkai588 已提交
1175 1176 1177 1178

            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset, mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        deformable_groups=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
    ):
1235
        super().__init__()
1236 1237 1238
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
1239 1240
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
1241
        self._deformable_groups = deformable_groups
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._channel_dim = 1

        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 2, 'kernel_size')

        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")

        self._padding = utils.convert_to_list(padding, 2, 'padding')

        filter_shape = [out_channels, in_channels // groups] + self._kernel_size

        def _get_default_param_initializer():
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
1260
            std = (2.0 / filter_elem_num) ** 0.5
1261 1262 1263 1264 1265
            return Normal(0.0, std, 0)

        self.weight = self.create_parameter(
            shape=filter_shape,
            attr=self._weight_attr,
1266 1267 1268 1269 1270
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
1271 1272

    def forward(self, x, offset, mask=None):
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        out = deform_conv2d(
            x=x,
            offset=offset,
            weight=self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._padding,
            dilation=self._dilation,
            deformable_groups=self._deformable_groups,
            groups=self._groups,
            mask=mask,
        )
1285
        return out
1286 1287


1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
def distribute_fpn_proposals(
    fpn_rois,
    min_level,
    max_level,
    refer_level,
    refer_scale,
    pixel_offset=False,
    rois_num=None,
    name=None,
):
1298
    r"""
1299 1300 1301 1302
        In Feature Pyramid Networks (FPN) models, it is needed to distribute
    all proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order of
    proposals, we return an array which indicates the original index of rois
1303
    in current proposals. To compute FPN level for each roi, the formula is given as follows:
1304

1305 1306 1307 1308 1309 1310 1311 1312
    .. math::
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
    where BBoxArea is a function to compute the area of each roi.

    Args:
        fpn_rois (Tensor): The input fpn_rois. 2-D Tensor with shape [N, 4] and data type can be
            float32 or float64.
1313
        min_level (int): The lowest level of FPN layer where the proposals come
1314 1315 1316 1317 1318
            from.
        max_level (int): The highest level of FPN layer where the proposals
            come from.
        refer_level (int): The referring level of FPN layer with specified scale.
        refer_scale (int): The referring scale of FPN layer with specified level.
1319
        pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of
1320
            image shape will be 1. 'False' by default.
1321
        rois_num (Tensor, optional): 1-D Tensor contains the number of RoIs in each image.
1322
            The shape is [B] and data type is int32. B is the number of images.
1323
            If rois_num not None, it will return a list of 1-D Tensor. Each element
1324 1325
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
1326 1327 1328
        name (str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
1329 1330 1331

    Returns:
        multi_rois (List) : The proposals in each FPN level. It is a list of 2-D Tensor with shape [M, 4], where M is
1332
            and data type is same as `fpn_rois` . The length is max_level-min_level+1.
1333
        restore_ind (Tensor): The index used to restore the order of fpn_rois. It is a 2-D Tensor with shape [N, 1]
1334 1335 1336
            , where N is the number of total rois. The data type is int32.
        rois_num_per_level (List): A list of 1-D Tensor and each Tensor is
            the RoIs' number in each image on the corresponding level. The shape
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
            is [B] and data type of int32, where B is the number of images.

    Examples:
        .. code-block:: python

            import paddle

            fpn_rois = paddle.rand((10, 4))
            rois_num = paddle.to_tensor([3, 1, 4, 2], dtype=paddle.int32)

            multi_rois, restore_ind, rois_num_per_level = paddle.vision.ops.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
    """
    num_lvl = max_level - min_level + 1

1357
    if in_dygraph_mode():
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        assert (
            rois_num is not None
        ), "rois_num should not be None in dygraph mode."
        (
            multi_rois,
            rois_num_per_level,
            restore_ind,
        ) = _C_ops.distribute_fpn_proposals(
            fpn_rois,
            rois_num,
            min_level,
            max_level,
            refer_level,
            refer_scale,
            pixel_offset,
        )
1374 1375
        return multi_rois, restore_ind, rois_num_per_level

1376
    if _non_static_mode():
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        assert (
            rois_num is not None
        ), "rois_num should not be None in dygraph mode."
        attrs = (
            'min_level',
            min_level,
            'max_level',
            max_level,
            'refer_level',
            refer_level,
            'refer_scale',
            refer_scale,
            'pixel_offset',
            pixel_offset,
        )
        (
            multi_rois,
            restore_ind,
            rois_num_per_level,
        ) = _legacy_C_ops.distribute_fpn_proposals(
            fpn_rois, rois_num, num_lvl, num_lvl, *attrs
        )
1399 1400 1401
        return multi_rois, restore_ind, rois_num_per_level

    else:
1402 1403 1404 1405 1406 1407
        check_variable_and_dtype(
            fpn_rois,
            'fpn_rois',
            ['float32', 'float64'],
            'distribute_fpn_proposals',
        )
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        helper = LayerHelper('distribute_fpn_proposals', **locals())
        dtype = helper.input_dtype('fpn_rois')
        multi_rois = [
            helper.create_variable_for_type_inference(dtype)
            for i in range(num_lvl)
        ]

        restore_ind = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'FpnRois': fpn_rois}
        outputs = {
            'MultiFpnRois': multi_rois,
            'RestoreIndex': restore_ind,
        }

        if rois_num is not None:
            inputs['RoisNum'] = rois_num
            rois_num_per_level = [
                helper.create_variable_for_type_inference(dtype='int32')
                for i in range(num_lvl)
            ]
            outputs['MultiLevelRoIsNum'] = rois_num_per_level
        else:
            rois_num_per_level = None

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        helper.append_op(
            type='distribute_fpn_proposals',
            inputs=inputs,
            outputs=outputs,
            attrs={
                'min_level': min_level,
                'max_level': max_level,
                'refer_level': refer_level,
                'refer_scale': refer_scale,
                'pixel_offset': pixel_offset,
            },
        )
1445 1446 1447
        return multi_rois, restore_ind, rois_num_per_level


1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
def read_file(filename, name=None):
    """
    Reads and outputs the bytes contents of a file as a uint8 Tensor
    with one dimension.

    Args:
        filename (str): Path of the file to be read.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        A uint8 tensor.

    Examples:
        .. code-block:: python

            import cv2
            import paddle

1468
            fake_img = (paddle.rand((400, 300, 3)).numpy() * 255).astype('uint8')
1469 1470 1471 1472

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
1473

1474
            print(img_bytes.shape)
1475
            # [142915]
1476 1477
    """

J
Jiabin Yang 已提交
1478
    if _non_static_mode():
1479
        return _legacy_C_ops.read_file('filename', filename)
1480 1481 1482 1483 1484 1485

    inputs = dict()
    attrs = {'filename': filename}

    helper = LayerHelper("read_file", **locals())
    out = helper.create_variable_for_type_inference('uint8')
1486 1487 1488
    helper.append_op(
        type="read_file", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
1489 1490 1491 1492 1493 1494

    return out


def decode_jpeg(x, mode='unchanged', name=None):
    """
1495 1496
    Decodes a JPEG image into a 3 dimensional RGB Tensor or 1 dimensional Gray Tensor.
    Optionally converts the image to the desired format.
1497 1498 1499
    The values of the output tensor are uint8 between 0 and 255.

    Args:
1500
        x (Tensor): A one dimensional uint8 tensor containing the raw bytes
1501
            of the JPEG image.
1502
        mode (str): The read mode used for optionally converting the image.
1503 1504 1505 1506 1507 1508 1509 1510 1511
            Default: 'unchanged'.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A decoded image tensor with shape (imge_channels, image_height, image_width)

    Examples:
        .. code-block:: python
1512 1513

            # required: gpu
1514
            import cv2
1515
            import numpy as np
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
            import paddle

            fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
            img = paddle.vision.ops.decode_jpeg(img_bytes)

            print(img.shape)
    """
Y
YuanRisheng 已提交
1528 1529 1530
    if in_dygraph_mode():
        return _C_ops.decode_jpeg(x, mode, _current_expected_place())
    elif _non_static_mode():
1531
        return _legacy_C_ops.decode_jpeg(x, "mode", mode)
1532 1533 1534 1535 1536 1537

    inputs = {'X': x}
    attrs = {"mode": mode}

    helper = LayerHelper("decode_jpeg", **locals())
    out = helper.create_variable_for_type_inference('uint8')
1538 1539 1540
    helper.append_op(
        type="decode_jpeg", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
1541 1542

    return out
1543 1544 1545 1546 1547


def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
1548
    position-sensitive average pooling on regions of interest specified by input. It performs
1549 1550 1551 1552 1553 1554 1555
    on inputs of nonuniform sizes to obtain fixed-size feature maps.

    PSROIPooling is proposed by R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.

    Args:
        x (Tensor): Input features with shape (N, C, H, W). The data type can be float32 or float64.
        boxes (Tensor): Box coordinates of ROIs (Regions of Interest) to pool over. It should be
1556
                         a 2-D Tensor with shape (num_rois, 4). Given as [[x1, y1, x2, y2], ...],
1557 1558 1559
                         (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in the batch.
1560
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type
1561
                               is int32. If int, H and W are both equal to output_size.
1562
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
                               input scale to the scale used when pooling. Default: 1.0
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        4-D Tensor. The pooled ROIs with shape (num_rois, output_channels, pooled_h, pooled_w).
        The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Examples:
        .. code-block:: python
1574

1575 1576 1577 1578 1579
            import paddle
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0)
1580 1581
            print(pool_out.shape)
            # [3, 10, 7, 7]
1582 1583 1584 1585 1586 1587
    """

    check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)
    pooled_height, pooled_width = output_size
1588
    assert len(x.shape) == 4, "Input features with shape should be (N, C, H, W)"
1589
    output_channels = int(x.shape[1] / (pooled_height * pooled_width))
Z
zyfncg 已提交
1590
    if in_dygraph_mode():
1591 1592 1593 1594 1595 1596 1597 1598 1599
        return _C_ops.psroi_pool(
            x,
            boxes,
            boxes_num,
            pooled_height,
            pooled_width,
            output_channels,
            spatial_scale,
        )
Z
zyfncg 已提交
1600
    if _in_legacy_dygraph():
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        return _legacy_C_ops.psroi_pool(
            x,
            boxes,
            boxes_num,
            "output_channels",
            output_channels,
            "spatial_scale",
            spatial_scale,
            "pooled_height",
            pooled_height,
            "pooled_width",
            pooled_width,
        )
1614 1615 1616 1617

    helper = LayerHelper('psroi_pool', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    helper.append_op(
        type='psroi_pool',
        inputs={'X': x, 'ROIs': boxes},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
        },
    )
1629 1630 1631 1632 1633 1634 1635 1636 1637
    return out


class PSRoIPool(Layer):
    """
    This interface is used to construct a callable object of the ``PSRoIPool`` class. Please
    refer to :ref:`api_paddle_vision_ops_psroi_pool`.

    Args:
1638
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type
1639
                               is int32. If int, H and W are both equal to output_size.
1640
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
                               input scale to the scale used when pooling. Default: 1.0.

    Shape:
        - x: 4-D Tensor with shape (N, C, H, W).
        - boxes: 2-D Tensor with shape (num_rois, 4).
        - boxes_num: 1-D Tensor.
        - output: 4-D tensor with shape (num_rois, output_channels, pooled_h, pooled_w).
              The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Returns:
1651
        None.
1652 1653 1654

    Examples:
        .. code-block:: python
1655

1656
            import paddle
1657

1658 1659 1660 1661 1662
            psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0)
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = psroi_module(x, boxes, boxes_num)
1663
            print(pool_out.shape) # [3, 10, 7, 7]
1664 1665 1666
    """

    def __init__(self, output_size, spatial_scale=1.0):
1667
        super().__init__()
1668 1669 1670 1671
        self.output_size = output_size
        self.spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
1672 1673 1674
        return psroi_pool(
            x, boxes, boxes_num, self.output_size, self.spatial_scale
        )
W
Wenyu 已提交
1675 1676 1677 1678 1679 1680


def roi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    This operator implements the roi_pooling layer.
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
1681
    The operator has three steps: 1. Dividing each region proposal into equal-sized sections with output_size(h, w) 2. Finding the largest value in each section 3. Copying these max values to the output buffer
W
Wenyu 已提交
1682 1683 1684
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn.

    Args:
1685 1686
        x (Tensor): input feature, 4D-Tensor with the shape of [N,C,H,W],
            where N is the batch size, C is the input channel, H is Height, W is weight.
W
Wenyu 已提交
1687
            The data type is float32 or float64.
1688 1689 1690
        boxes (Tensor): boxes (Regions of Interest) to pool over.
            2D-Tensor with the shape of [num_boxes,4].
            Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
W
Wenyu 已提交
1691 1692 1693 1694 1695 1696 1697
            and (x2, y2) is the bottom right coordinates.
        boxes_num (Tensor): the number of RoIs in each image, data type is int32. Default: None
        output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
        name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.

    Returns:
1698
        pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
W
Wenyu 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.ops import roi_pool

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            pool_out = roi_pool(data, boxes, boxes_num=boxes_num, output_size=3)
            assert pool_out.shape == [3, 256, 3, 3], ''
    """

    check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
Z
zyfncg 已提交
1720
    if in_dygraph_mode():
1721 1722 1723 1724 1725 1726
        assert (
            boxes_num is not None
        ), "boxes_num should not be None in dygraph mode."
        return _C_ops.roi_pool(
            x, boxes, boxes_num, pooled_height, pooled_width, spatial_scale
        )
Z
zyfncg 已提交
1727
    if _in_legacy_dygraph():
1728 1729 1730
        assert (
            boxes_num is not None
        ), "boxes_num should not be None in dygraph mode."
1731
        pool_out, argmaxes = _legacy_C_ops.roi_pool(
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
            x,
            boxes,
            boxes_num,
            "pooled_height",
            pooled_height,
            "pooled_width",
            pooled_width,
            "spatial_scale",
            spatial_scale,
        )
W
Wenyu 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        return pool_out

    else:
        check_variable_and_dtype(x, 'x', ['float32'], 'roi_pool')
        check_variable_and_dtype(boxes, 'boxes', ['float32'], 'roi_pool')
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {
            "X": x,
            "ROIs": boxes,
        }
        if boxes_num is not None:
            inputs['RoisNum'] = boxes_num
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        helper.append_op(
            type="roi_pool",
            inputs=inputs,
            outputs={"Out": pool_out, "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale,
            },
        )
W
Wenyu 已提交
1768 1769 1770 1771 1772 1773
        return pool_out


class RoIPool(Layer):
    """
    This interface is used to construct a callable object of the `RoIPool` class. Please
1774
    refer to :ref:`api_paddle_vision_ops_roi_pool`.
W
Wenyu 已提交
1775 1776 1777 1778 1779 1780

    Args:
        output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.

    Returns:
1781
        pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
W
Wenyu 已提交
1782 1783 1784 1785 1786 1787

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.ops import RoIPool
1788

W
Wenyu 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            roi_pool = RoIPool(output_size=(4, 3))
            pool_out = roi_pool(data, boxes, boxes_num)
            assert pool_out.shape == [3, 256, 4, 3], ''
    """

    def __init__(self, output_size, spatial_scale=1.0):
1800
        super().__init__()
W
Wenyu 已提交
1801 1802 1803 1804
        self._output_size = output_size
        self._spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
1805 1806 1807 1808 1809 1810 1811
        return roi_pool(
            x=x,
            boxes=boxes,
            boxes_num=boxes_num,
            output_size=self._output_size,
            spatial_scale=self._spatial_scale,
        )
W
Wenyu 已提交
1812 1813 1814 1815

    def extra_repr(self):
        main_str = 'output_size={_output_size}, spatial_scale={_spatial_scale}'
        return main_str.format(**self.__dict__)
F
Feng Ni 已提交
1816 1817


1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
def roi_align(
    x,
    boxes,
    boxes_num,
    output_size,
    spatial_scale=1.0,
    sampling_ratio=-1,
    aligned=True,
    name=None,
):
F
Feng Ni 已提交
1828
    """
1829
    Implementing the roi_align layer.
F
Feng Ni 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
    Region of Interest (RoI) Align operator (also known as RoI Align) is to
    perform bilinear interpolation on inputs of nonuniform sizes to obtain
    fixed-size feature maps (e.g. 7*7), as described in Mask R-CNN.

    Dividing each region proposal into equal-sized sections with the pooled_width
    and pooled_height. Location remains the origin result.

    In each ROI bin, the value of the four regularly sampled locations are
    computed directly through bilinear interpolation. The output is the mean of
1839
    four locations. Thus avoid the misaligned problem.
F
Feng Ni 已提交
1840 1841

    Args:
1842
        x (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
F
Feng Ni 已提交
1843 1844
            where N is the batch size, C is the input channel, H is Height,
            W is weight. The data type is float32 or float64.
1845
        boxes (Tensor): Boxes (RoIs, Regions of Interest) to pool over. It
F
Feng Ni 已提交
1846 1847 1848 1849 1850 1851 1852
            should be a 2-D Tensor of shape (num_boxes, 4). The data type is
            float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
            the top left coordinates, and (x2, y2) is the bottom right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in
            the batch, the data type is int32.
        output_size (int or Tuple[int, int]): The pooled output size(h, w), data
            type is int32. If int, h and w are both equal to output_size.
1853
        spatial_scale (float32, optional): Multiplicative spatial scale factor to translate
F
Feng Ni 已提交
1854
            ROI coords from their input scale to the scale used when pooling.
1855 1856
            Default: 1.0.
        sampling_ratio (int32, optional): number of sampling points in the interpolation
F
Feng Ni 已提交
1857 1858 1859 1860 1861
            grid used to compute the output value of each pooled output bin.
            If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling
            points per bin are used.
            If <= 0, then an adaptive number of grid points are used (computed
            as ``ceil(roi_width / output_width)``, and likewise for height).
1862 1863
            Default: -1.
        aligned (bool, optional): If False, use the legacy implementation. If True, pixel
F
Feng Ni 已提交
1864 1865
            shift the box coordinates it by -0.5 for a better alignment with the
            two neighboring pixel indices. This version is used in Detectron2.
1866
            Default: True.
F
Feng Ni 已提交
1867 1868 1869 1870 1871
        name(str, optional): For detailed information, please refer to :
            ref:`api_guide_Name`. Usually name is no need to set and None by
            default.

    Returns:
1872
        The output of ROIAlignOp is a 4-D tensor with shape (num_boxes,
F
Feng Ni 已提交
1873 1874 1875 1876
            channels, pooled_h, pooled_w). The data type is float32 or float64.

    Examples:
        .. code-block:: python
1877

F
Feng Ni 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
            import paddle
            from paddle.vision.ops import roi_align

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            align_out = roi_align(data, boxes, boxes_num, output_size=3)
            assert align_out.shape == [3, 256, 3, 3]
    """

    check_type(output_size, 'output_size', (int, tuple), 'roi_align')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
1895
    if in_dygraph_mode():
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
        assert (
            boxes_num is not None
        ), "boxes_num should not be None in dygraph mode."
        return _C_ops.roi_align(
            x,
            boxes,
            boxes_num,
            pooled_height,
            pooled_width,
            spatial_scale,
            sampling_ratio,
            aligned,
        )
1909
    if _in_legacy_dygraph():
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        assert (
            boxes_num is not None
        ), "boxes_num should not be None in dygraph mode."
        align_out = _legacy_C_ops.roi_align(
            x,
            boxes,
            boxes_num,
            "pooled_height",
            pooled_height,
            "pooled_width",
            pooled_width,
            "spatial_scale",
            spatial_scale,
            "sampling_ratio",
            sampling_ratio,
            "aligned",
            aligned,
        )
F
Feng Ni 已提交
1928 1929 1930 1931
        return align_out

    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'roi_align')
1932 1933 1934
        check_variable_and_dtype(
            boxes, 'boxes', ['float32', 'float64'], 'roi_align'
        )
F
Feng Ni 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943
        helper = LayerHelper('roi_align', **locals())
        dtype = helper.input_dtype()
        align_out = helper.create_variable_for_type_inference(dtype)
        inputs = {
            "X": x,
            "ROIs": boxes,
        }
        if boxes_num is not None:
            inputs['RoisNum'] = boxes_num
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        helper.append_op(
            type="roi_align",
            inputs=inputs,
            outputs={"Out": align_out},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale,
                "sampling_ratio": sampling_ratio,
                "aligned": aligned,
            },
        )
F
Feng Ni 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        return align_out


class RoIAlign(Layer):
    """
    This interface is used to construct a callable object of the `RoIAlign` class.
    Please refer to :ref:`api_paddle_vision_ops_roi_align`.

    Args:
        output_size (int or tuple[int, int]): The pooled output size(h, w),
            data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float32, optional): Multiplicative spatial scale factor
            to translate ROI coords from their input scale to the scale used
            when pooling. Default: 1.0

    Returns:
1972
        The output of ROIAlign operator is a 4-D tensor with
F
Feng Ni 已提交
1973 1974 1975 1976
            shape (num_boxes, channels, pooled_h, pooled_w).

    Examples:
        ..  code-block:: python
1977

F
Feng Ni 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
            import paddle
            from paddle.vision.ops import RoIAlign

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            roi_align = RoIAlign(output_size=(4, 3))
            align_out = roi_align(data, boxes, boxes_num)
            assert align_out.shape == [3, 256, 4, 3]
    """

    def __init__(self, output_size, spatial_scale=1.0):
1992
        super().__init__()
F
Feng Ni 已提交
1993 1994 1995 1996
        self._output_size = output_size
        self._spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num, aligned=True):
1997 1998 1999 2000 2001 2002 2003 2004
        return roi_align(
            x=x,
            boxes=boxes,
            boxes_num=boxes_num,
            output_size=self._output_size,
            spatial_scale=self._spatial_scale,
            aligned=aligned,
        )
N
Nyakku Shigure 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


class ConvNormActivation(Sequential):
    """
    Configurable block used for Convolution-Normalzation-Activation blocks.
    This code is based on the torchvision code with modifications.
    You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L68
    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
2015 2016 2017
        kernel_size: (int|list|tuple, optional): Size of the convolving kernel. Default: 3
        stride (int|list|tuple, optional): Stride of the convolution. Default: 1
        padding (int|str|tuple|list, optional): Padding added to all four sides of the input. Default: None,
N
Nyakku Shigure 已提交
2018 2019 2020
            in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., paddle.nn.Layer], optional): Norm layer that will be stacked on top of the convolutiuon layer.
2021
            If ``None`` this layer wont be used. Default: ``paddle.nn.BatchNorm2D``
N
Nyakku Shigure 已提交
2022 2023 2024 2025 2026 2027
        activation_layer (Callable[..., paddle.nn.Layer], optional): Activation function which will be stacked on top of the normalization
            layer (if not ``None``), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``paddle.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    """

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=3,
        stride=1,
        padding=None,
        groups=1,
        norm_layer=BatchNorm2D,
        activation_layer=ReLU,
        dilation=1,
        bias=None,
    ):
N
Nyakku Shigure 已提交
2041 2042 2043 2044 2045
        if padding is None:
            padding = (kernel_size - 1) // 2 * dilation
        if bias is None:
            bias = norm_layer is None
        layers = [
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
            Conv2D(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                dilation=dilation,
                groups=groups,
                bias_attr=bias,
            )
N
Nyakku Shigure 已提交
2056 2057 2058 2059 2060 2061
        ]
        if norm_layer is not None:
            layers.append(norm_layer(out_channels))
        if activation_layer is not None:
            layers.append(activation_layer())
        super().__init__(*layers)
2062 2063


2064 2065 2066 2067 2068 2069 2070 2071
def nms(
    boxes,
    iou_threshold=0.3,
    scores=None,
    category_idxs=None,
    categories=None,
    top_k=None,
):
2072 2073
    r"""
    This operator implements non-maximum suppression. Non-maximum suppression (NMS)
2074 2075 2076
    is used to select one bounding box out of many overlapping bounding boxes in object detection.
    Boxes with IoU > iou_threshold will be considered as overlapping boxes,
    just one with highest score can be kept. Here IoU is Intersection Over Union,
2077 2078 2079 2080 2081 2082 2083
    which can be computed by:

    ..  math::

        IoU = \frac{intersection\_area(box1, box2)}{union\_area(box1, box2)}

    If scores are provided, input boxes will be sorted by their scores firstly.
R
RichardWooSJTU 已提交
2084

2085
    If category_idxs and categories are provided, NMS will be performed with a batched style,
2086 2087
    which means NMS will be applied to each category respectively and results of each category
    will be concated and sorted by scores.
2088

2089 2090 2091
    If K is provided, only the first k elements will be returned. Otherwise, all box indices sorted by scores will be returned.

    Args:
2092 2093 2094 2095
        boxes(Tensor): The input boxes data to be computed, it's a 2D-Tensor with
            the shape of [num_boxes, 4]. The data type is float32 or float64.
            Given as [[x1, y1, x2, y2], …],  (x1, y1) is the top left coordinates,
            and (x2, y2) is the bottom right coordinates.
2096
            Their relation should be ``0 <= x1 < x2 && 0 <= y1 < y2``.
R
RichardWooSJTU 已提交
2097
        iou_threshold(float32, optional): IoU threshold for determine overlapping boxes. Default value: 0.3.
2098
        scores(Tensor, optional): Scores corresponding to boxes, it's a 1D-Tensor with
R
RichardWooSJTU 已提交
2099
            shape of [num_boxes]. The data type is float32 or float64. Default: None.
2100
        category_idxs(Tensor, optional): Category indices corresponding to boxes.
R
RichardWooSJTU 已提交
2101 2102
            it's a 1D-Tensor with shape of [num_boxes]. The data type is int64. Default: None.
        categories(List, optional): A list of unique id of all categories. The data type is int64. Default: None.
2103
        top_k(int64, optional): The top K boxes who has higher score and kept by NMS preds to
R
RichardWooSJTU 已提交
2104
            consider. top_k should be smaller equal than num_boxes. Default: None.
2105 2106 2107 2108 2109 2110

    Returns:
        Tensor: 1D-Tensor with the shape of [num_boxes]. Indices of boxes kept by NMS.

    Examples:
        .. code-block:: python
2111

2112 2113
            import paddle

2114
            boxes = paddle.rand([4, 4]).astype('float32')
2115 2116
            boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
            boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
2117 2118 2119 2120 2121 2122
            print(boxes)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.64811575, 0.89756244, 0.86473107, 1.48552322],
            #         [0.48085716, 0.84799081, 0.54517937, 0.86396021],
            #         [0.62646860, 0.72901905, 1.17392159, 1.69691563],
            #         [0.89729202, 0.46281594, 1.88733089, 0.98588502]])
2123

2124 2125 2126 2127
            out = paddle.vision.ops.nms(boxes, 0.1)
            print(out)
            # Tensor(shape=[3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 3])
2128

2129
            scores = paddle.to_tensor([0.6, 0.7, 0.4, 0.233])
2130 2131

            categories = [0, 1, 2, 3]
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
            category_idxs = paddle.to_tensor([2, 0, 0, 3], dtype="int64")

            out = paddle.vision.ops.nms(boxes,
                                        0.1,
                                        paddle.to_tensor(scores),
                                        paddle.to_tensor(category_idxs),
                                        categories,
                                        4)
            print(out)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 0, 2, 3])
2143 2144 2145
    """

    def _nms(boxes, iou_threshold):
2146
        if in_dygraph_mode():
2147
            return _C_ops.nms(boxes, iou_threshold)
2148

2149
        if _non_static_mode():
2150
            return _legacy_C_ops.nms(boxes, 'iou_threshold', iou_threshold)
2151 2152 2153

        helper = LayerHelper('nms', **locals())
        out = helper.create_variable_for_type_inference('int64')
2154 2155 2156 2157 2158 2159
        helper.append_op(
            type='nms',
            inputs={'Boxes': boxes},
            outputs={'KeepBoxesIdxs': out},
            attrs={'iou_threshold': iou_threshold},
        )
2160 2161 2162 2163 2164 2165
        return out

    if scores is None:
        return _nms(boxes, iou_threshold)

    import paddle
2166

2167 2168
    if category_idxs is None:
        sorted_global_indices = paddle.argsort(scores, descending=True)
2169 2170 2171
        sorted_keep_boxes_indices = _nms(
            boxes[sorted_global_indices], iou_threshold
        )
2172
        return sorted_global_indices[sorted_keep_boxes_indices]
2173 2174

    if top_k is not None:
2175 2176 2177 2178 2179 2180
        assert (
            top_k <= scores.shape[0]
        ), "top_k should be smaller equal than the number of boxes"
    assert (
        categories is not None
    ), "if category_idxs is given, categories which is a list of unique id of all categories is necessary"
2181 2182 2183 2184 2185 2186

    mask = paddle.zeros_like(scores, dtype=paddle.int32)

    for category_id in categories:
        cur_category_boxes_idxs = paddle.where(category_idxs == category_id)[0]
        shape = cur_category_boxes_idxs.shape[0]
2187 2188 2189
        cur_category_boxes_idxs = paddle.reshape(
            cur_category_boxes_idxs, [shape]
        )
2190 2191 2192 2193 2194 2195 2196
        if shape == 0:
            continue
        elif shape == 1:
            mask[cur_category_boxes_idxs] = 1
            continue
        cur_category_boxes = boxes[cur_category_boxes_idxs]
        cur_category_scores = scores[cur_category_boxes_idxs]
2197 2198 2199
        cur_category_sorted_indices = paddle.argsort(
            cur_category_scores, descending=True
        )
2200
        cur_category_sorted_boxes = cur_category_boxes[
2201 2202
            cur_category_sorted_indices
        ]
2203

2204 2205 2206
        cur_category_keep_boxes_sub_idxs = cur_category_sorted_indices[
            _nms(cur_category_sorted_boxes, iou_threshold)
        ]
2207 2208 2209

        updates = paddle.ones_like(
            cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs],
2210 2211
            dtype=paddle.int32,
        )
2212 2213 2214 2215
        mask = paddle.scatter(
            mask,
            cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs],
            updates,
2216 2217
            overwrite=True,
        )
2218 2219 2220
    keep_boxes_idxs = paddle.where(mask)[0]
    shape = keep_boxes_idxs.shape[0]
    keep_boxes_idxs = paddle.reshape(keep_boxes_idxs, [shape])
2221 2222 2223
    sorted_sub_indices = paddle.argsort(
        scores[keep_boxes_idxs], descending=True
    )
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    if top_k is None:
        return keep_boxes_idxs[sorted_sub_indices]

    if _non_static_mode():
        top_k = shape if shape < top_k else top_k
        _, topk_sub_indices = paddle.topk(scores[keep_boxes_idxs], top_k)
        return keep_boxes_idxs[topk_sub_indices]

    return keep_boxes_idxs[sorted_sub_indices][:top_k]
2234 2235


2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
def generate_proposals(
    scores,
    bbox_deltas,
    img_size,
    anchors,
    variances,
    pre_nms_top_n=6000,
    post_nms_top_n=1000,
    nms_thresh=0.5,
    min_size=0.1,
    eta=1.0,
    pixel_offset=False,
    return_rois_num=False,
    name=None,
):
2251 2252
    """
    This operation proposes RoIs according to each box with their
2253 2254
    probability to be a foreground object. And
    the proposals of RPN output are  calculated by anchors, bbox_deltas and scores. Final proposals
2255 2256 2257 2258 2259 2260
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

    1. Transpose and resize scores and bbox_deltas in size of
       (H * W * A, 1) and (H * W * A, 4)
2261
    2. Calculate box locations as proposals candidates.
2262
    3. Clip boxes to image
2263
    4. Remove predicted boxes with small area.
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
    5. Apply non-maximum suppression (NMS) to get final proposals as output.

    Args:
        scores (Tensor): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map. The data type must be float32.
        bbox_deltas (Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the difference between predicted box location and
            anchor location. The data type must be float32.
        img_size (Tensor): A 2-D Tensor with shape [N, 2] represents origin
            image shape information for N batch, including height and width of the input sizes.
            The data type can be float32 or float64.
        anchors (Tensor):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances (Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format. The data type must be float32.
        pre_nms_top_n (float, optional): Number of total bboxes to be kept per
            image before NMS. `6000` by default.
        post_nms_top_n (float, optional): Number of total bboxes to be kept per
            image after NMS. `1000` by default.
        nms_thresh (float, optional): Threshold in NMS. The data type must be float32. `0.5` by default.
        min_size (float, optional): Remove predicted boxes with either height or
            width less than this value. `0.1` by default.
        eta(float, optional): Apply in adaptive NMS, only works if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration. 1.0 by default.
        pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of `img_size` will be 1. 'False' by default.
        return_rois_num (bool, optional): Whether to return `rpn_rois_num` . When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
            num of each image in one batch. 'False' by default.
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

    Returns:
        - rpn_rois (Tensor): The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - rpn_roi_probs (Tensor): The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - rpn_rois_num (Tensor): Rois's num of each image in one batch. 1-D Tensor with shape ``[B,]`` while ``B`` is the batch size. And its sum equals to RoIs number ``N`` .

    Examples:
        .. code-block:: python

            import paddle

            scores = paddle.rand((2,4,5,5), dtype=paddle.float32)
            bbox_deltas = paddle.rand((2, 16, 5, 5), dtype=paddle.float32)
            img_size = paddle.to_tensor([[224.0, 224.0], [224.0, 224.0]])
            anchors = paddle.rand((2,5,4,4), dtype=paddle.float32)
            variances = paddle.rand((2,5,10,4), dtype=paddle.float32)
            rois, roi_probs, roi_nums = paddle.vision.ops.generate_proposals(scores, bbox_deltas,
                         img_size, anchors, variances, return_rois_num=True)
            print(rois, roi_probs, roi_nums)
    """

Z
zhiboniu 已提交
2320
    if in_dygraph_mode():
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
        assert (
            return_rois_num
        ), "return_rois_num should be True in dygraph mode."
        attrs = (
            pre_nms_top_n,
            post_nms_top_n,
            nms_thresh,
            min_size,
            eta,
            pixel_offset,
        )
2332
        rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
2333 2334
            scores, bbox_deltas, img_size, anchors, variances, *attrs
        )
Z
zhiboniu 已提交
2335 2336 2337

        return rpn_rois, rpn_roi_probs, rpn_rois_num
    elif _non_static_mode():
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        assert (
            return_rois_num
        ), "return_rois_num should be True in dygraph mode."
        attrs = (
            'pre_nms_topN',
            pre_nms_top_n,
            'post_nms_topN',
            post_nms_top_n,
            'nms_thresh',
            nms_thresh,
            'min_size',
            min_size,
            'eta',
            eta,
            'pixel_offset',
            pixel_offset,
        )
        (
            rpn_rois,
            rpn_roi_probs,
            rpn_rois_num,
        ) = _legacy_C_ops.generate_proposals_v2(
            scores, bbox_deltas, img_size, anchors, variances, *attrs
        )
2362 2363 2364 2365 2366

        return rpn_rois, rpn_roi_probs, rpn_rois_num

    helper = LayerHelper('generate_proposals_v2', **locals())

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
    check_variable_and_dtype(
        scores, 'scores', ['float32'], 'generate_proposals_v2'
    )
    check_variable_and_dtype(
        bbox_deltas, 'bbox_deltas', ['float32'], 'generate_proposals_v2'
    )
    check_variable_and_dtype(
        img_size, 'img_size', ['float32', 'float64'], 'generate_proposals_v2'
    )
    check_variable_and_dtype(
        anchors, 'anchors', ['float32'], 'generate_proposals_v2'
    )
    check_variable_and_dtype(
        variances, 'variances', ['float32'], 'generate_proposals_v2'
    )
2382 2383

    rpn_rois = helper.create_variable_for_type_inference(
2384 2385
        dtype=bbox_deltas.dtype
    )
2386
    rpn_roi_probs = helper.create_variable_for_type_inference(
2387 2388
        dtype=scores.dtype
    )
2389 2390 2391 2392 2393 2394 2395 2396 2397
    outputs = {
        'RpnRois': rpn_rois,
        'RpnRoiProbs': rpn_roi_probs,
    }
    if return_rois_num:
        rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rpn_rois_num.stop_gradient = True
        outputs['RpnRoisNum'] = rpn_rois_num

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
    helper.append_op(
        type="generate_proposals_v2",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImShape': img_size,
            'Anchors': anchors,
            'Variances': variances,
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta,
            'pixel_offset': pixel_offset,
        },
        outputs=outputs,
    )
2417 2418 2419 2420 2421 2422
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
    if not return_rois_num:
        rpn_rois_num = None

    return rpn_rois, rpn_roi_probs, rpn_rois_num
2423 2424


2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
def matrix_nms(
    bboxes,
    scores,
    score_threshold,
    post_threshold,
    nms_top_k,
    keep_top_k,
    use_gaussian=False,
    gaussian_sigma=2.0,
    background_label=0,
    normalized=True,
    return_index=False,
    return_rois_num=True,
    name=None,
):
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
    """
    This operator does matrix non maximum suppression (NMS).
    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
    Args:
        bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Tensor): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        return_rois_num(bool): whether return rois_num. Default: True
        name(str): Name of the matrix nms op. Default: None.
    Returns:
        A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
        otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
        Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.
        rois_num (Tensor): A 1-D Tensor with shape [N] containing
            the number of detected boxes in each image.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.ops import matrix_nms
            boxes = paddle.rand([4, 1, 4])
            boxes[..., 2] = boxes[..., 0] + boxes[..., 2]
            boxes[..., 3] = boxes[..., 1] + boxes[..., 3]
            scores = paddle.rand([4, 80, 1])
            out = matrix_nms(bboxes=boxes, scores=scores, background_label=0,
                                 score_threshold=0.5, post_threshold=0.1,
                                 nms_top_k=400, keep_top_k=200, normalized=False)
    """
2502 2503 2504 2505 2506 2507
    check_variable_and_dtype(
        bboxes, 'BBoxes', ['float32', 'float64'], 'matrix_nms'
    )
    check_variable_and_dtype(
        scores, 'Scores', ['float32', 'float64'], 'matrix_nms'
    )
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    if in_dygraph_mode():
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
        out, index, rois_num = _C_ops.matrix_nms(
            bboxes,
            scores,
            score_threshold,
            nms_top_k,
            keep_top_k,
            post_threshold,
            use_gaussian,
            gaussian_sigma,
            background_label,
            normalized,
        )
Z
zhiboniu 已提交
2530 2531 2532 2533 2534 2535
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return out, rois_num, index
    elif _in_legacy_dygraph():
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
        attrs = (
            'background_label',
            background_label,
            'score_threshold',
            score_threshold,
            'post_threshold',
            post_threshold,
            'nms_top_k',
            nms_top_k,
            'gaussian_sigma',
            gaussian_sigma,
            'use_gaussian',
            use_gaussian,
            'keep_top_k',
            keep_top_k,
            'normalized',
            normalized,
        )
2554
        out, index, rois_num = _legacy_C_ops.matrix_nms(bboxes, scores, *attrs)
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return out, rois_num, index
    else:
        helper = LayerHelper('matrix_nms', **locals())
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')
        outputs = {'Out': output, 'Index': index}
        if return_rois_num:
            rois_num = helper.create_variable_for_type_inference(dtype='int32')
            outputs['RoisNum'] = rois_num

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
        helper.append_op(
            type="matrix_nms",
            inputs={'BBoxes': bboxes, 'Scores': scores},
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'post_threshold': post_threshold,
                'nms_top_k': nms_top_k,
                'gaussian_sigma': gaussian_sigma,
                'use_gaussian': use_gaussian,
                'keep_top_k': keep_top_k,
                'normalized': normalized,
            },
            outputs=outputs,
        )
2584 2585 2586 2587 2588 2589 2590
        output.stop_gradient = True

        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return output, rois_num, index