ops.py 84.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from ..fluid.layer_helper import LayerHelper
17
from ..fluid.data_feeder import check_type, check_variable_and_dtype
18
from ..fluid.layers import nn, utils
N
Nyakku Shigure 已提交
19
from ..nn import Layer, Conv2D, Sequential, ReLU, BatchNorm2D
20
from ..fluid.initializer import Normal
21
from ..fluid.framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
22
from paddle import _C_ops, _legacy_C_ops
Y
YuanRisheng 已提交
23
from ..framework import _current_expected_place
24

25
__all__ = [  #noqa
26 27 28 29
    'yolo_loss', 'yolo_box', 'deform_conv2d', 'DeformConv2D',
    'distribute_fpn_proposals', 'generate_proposals', 'read_file',
    'decode_jpeg', 'roi_pool', 'RoIPool', 'psroi_pool', 'PSRoIPool',
    'roi_align', 'RoIAlign', 'nms', 'matrix_nms'
30
]
31 32 33 34 35 36 37 38 39 40 41 42 43 44


def yolo_loss(x,
              gt_box,
              gt_label,
              anchors,
              anchor_mask,
              class_num,
              ignore_thresh,
              downsample_ratio,
              gt_score=None,
              use_label_smooth=True,
              name=None,
              scale_x_y=1.):
45
    r"""
46 47 48

    This operator generates YOLOv3 loss based on given predict result and ground
    truth boxes.
49

50
    The output of previous network is in shape [N, C, H, W], while H and W
51
    should be the same, H and W specify the grid size, each grid point predict
52 53
    given number bounding boxes, this given number, which following will be represented as S,
    is specified by the number of anchor clusters in each scale. In the second dimension(the channel
54 55 56
    dimension), C should be equal to S * (class_num + 5), class_num is the object
    category number of source dataset(such as 80 in coco dataset), so in the
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    also includes confidence score of the box and class one-hot key of each anchor box.

    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
    should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    In the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    As for confidence score, it is the logistic regression value of IoU between
79 80
    anchor boxes and ground truth boxes, the score of the anchor box which has
    the max IoU should be 1, and if the anchor box has IoU bigger than ignore
81 82 83
    thresh, the confidence score loss of this anchor box will be ignored.

    Therefore, the YOLOv3 loss consists of three major parts: box location loss,
84 85
    objectness loss and classification loss. The L1 loss is used for
    box coordinates (w, h), sigmoid cross entropy loss is used for box
86 87
    coordinates (x, y), objectness loss and classification loss.

88
    Each groud truth box finds a best matching anchor box in all anchors.
89 90 91 92
    Prediction of this anchor box will incur all three parts of losses, and
    prediction of anchor boxes with no GT box matched will only incur objectness
    loss.

93
    In order to trade off box coordinate losses between big boxes and small
94 95 96 97 98 99 100 101 102 103
    boxes, box coordinate losses will be mutiplied by scale weight, which is
    calculated as follows.

    $$
    weight_{box} = 2.0 - t_w * t_h
    $$

    Final loss will be represented as follows.

    $$
S
sunzhongkai588 已提交
104
    loss = (loss_{xy} + loss_{wh}) * weight_{box} + loss_{conf} + loss_{class}
105 106 107
    $$

    While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
108
    target will be smoothed when calculating classification loss, target of
109 110 111
    positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
    negetive samples will be smoothed to :math:`1.0 / class\_num`.

112 113
    While :attr:`gt_score` is given, which means the mixup score of ground truth
    boxes, all losses incured by a ground truth box will be multiplied by its
114 115 116 117 118 119 120
    mixup score.

    Args:
        x (Tensor): The input tensor of YOLOv3 loss operator, This is a 4-D
                      tensor with shape of [N, C, H, W]. H and W should be same,
                      and the second dimension(C) stores box locations, confidence
                      score and classification one-hot keys of each anchor box.
121
                      The data type is float32 or float64.
122
        gt_box (Tensor): groud truth boxes, should be in shape of [N, B, 4],
123
                          in the third dimension, x, y, w, h should be stored.
124
                          x,y is the center coordinate of boxes, w, h are the
125
                          width and height, x, y, w, h should be divided by
126
                          input image height to scale to [0, 1].
127 128
                          N is the batch number and B is the max box number in
                          an image.The data type is float32 or float64.
129
        gt_label (Tensor): class id of ground truth boxes, should be in shape
130
                            of [N, B].The data type is int32.
131 132 133 134 135 136 137 138
        anchors (list|tuple): The anchor width and height, it will be parsed
                              pair by pair.
        anchor_mask (list|tuple): The mask index of anchors used in current
                                  YOLOv3 loss calculation.
        class_num (int): The number of classes.
        ignore_thresh (float): The ignore threshold to ignore confidence loss.
        downsample_ratio (int): The downsample ratio from network input to YOLOv3
                                loss input, so 32, 16, 8 should be set for the
139 140 141
                                first, second, and thrid YOLOv3 loss operators.
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
142 143 144
                       please refer to :ref:`api_guide_Name`
        gt_score (Tensor): mixup score of ground truth boxes, should be in shape
                            of [N, B]. Default None.
145
        use_label_smooth (bool): Whether to use label smooth. Default True.
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        scale_x_y (float): Scale the center point of decoded bounding box.
                           Default 1.0

    Returns:
        Tensor: A 1-D tensor with shape [N], the value of yolov3 loss

    Examples:
      .. code-block:: python

          import paddle
          import numpy as np

          x = np.random.random([2, 14, 8, 8]).astype('float32')
          gt_box = np.random.random([2, 10, 4]).astype('float32')
          gt_label = np.random.random([2, 10]).astype('int32')

          x = paddle.to_tensor(x)
          gt_box = paddle.to_tensor(gt_box)
          gt_label = paddle.to_tensor(gt_label)

          loss = paddle.vision.ops.yolo_loss(x,
                                             gt_box=gt_box,
                                             gt_label=gt_label,
                                             anchors=[10, 13, 16, 30],
                                             anchor_mask=[0, 1],
                                             class_num=2,
                                             ignore_thresh=0.7,
                                             downsample_ratio=8,
                                             use_label_smooth=True,
                                             scale_x_y=1.)
    """

178
    if in_dygraph_mode():
179 180 181 182
        loss, _, _ = _C_ops.yolov3_loss(x, gt_box, gt_label, gt_score, anchors,
                                        anchor_mask, class_num, ignore_thresh,
                                        downsample_ratio, use_label_smooth,
                                        scale_x_y)
183 184
        return loss

185
    if _non_static_mode():
186
        loss, _, _ = _legacy_C_ops.yolov3_loss(
187 188
            x, gt_box, gt_label, gt_score, 'anchors', anchors, 'anchor_mask',
            anchor_mask, 'class_num', class_num, 'ignore_thresh', ignore_thresh,
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            'downsample_ratio', downsample_ratio, 'use_label_smooth',
            use_label_smooth, 'scale_x_y', scale_x_y)
        return loss

    helper = LayerHelper('yolov3_loss', **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_loss')
    check_variable_and_dtype(gt_box, 'gt_box', ['float32', 'float64'],
                             'yolo_loss')
    check_variable_and_dtype(gt_label, 'gt_label', 'int32', 'yolo_loss')
    check_type(anchors, 'anchors', (list, tuple), 'yolo_loss')
    check_type(anchor_mask, 'anchor_mask', (list, tuple), 'yolo_loss')
    check_type(class_num, 'class_num', int, 'yolo_loss')
    check_type(ignore_thresh, 'ignore_thresh', float, 'yolo_loss')
    check_type(use_label_smooth, 'use_label_smooth', bool, 'yolo_loss')

    loss = helper.create_variable_for_type_inference(dtype=x.dtype)

    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

    inputs = {
        "X": x,
        "GTBox": gt_box,
        "GTLabel": gt_label,
    }
    if gt_score is not None:
        inputs["GTScore"] = gt_score

    attrs = {
        "anchors": anchors,
        "anchor_mask": anchor_mask,
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
        "downsample_ratio": downsample_ratio,
        "use_label_smooth": use_label_smooth,
        "scale_x_y": scale_x_y,
    }

228 229 230 231 232 233 234 235
    helper.append_op(type='yolov3_loss',
                     inputs=inputs,
                     outputs={
                         'Loss': loss,
                         'ObjectnessMask': objectness_mask,
                         'GTMatchMask': gt_match_mask
                     },
                     attrs=attrs)
236 237 238 239 240 241 242 243 244 245 246
    return loss


def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             clip_bbox=True,
             name=None,
247 248 249
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
250
    r"""
251 252

    This operator generates YOLO detection boxes from output of YOLOv3 network.
253

254
    The output of previous network is in shape [N, C, H, W], while H and W
255
    should be the same, H and W specify the grid size, each grid point predict
256 257
    given number boxes, this given number, which following will be represented as S,
    is specified by the number of anchors. In the second dimension(the channel
258 259
    dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false,
    otherwise C should be equal to S * (6 + class_num). class_num is the object
260 261 262
    category number of source dataset(such as 80 in coco dataset), so the
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
    also includes confidence score of the box and class one-hot key of each anchor
263 264
    box.

265
    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    predictions should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    in the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    The logistic regression value of the 5th channel of each anchor prediction boxes
    represents the confidence score of each prediction box, and the logistic
286
    regression value of the last :attr:`class_num` channels of each anchor prediction
287
    boxes represents the classifcation scores. Boxes with confidence scores less than
288
    :attr:`conf_thresh` should be ignored, and box final scores is the product of
289 290 291 292 293 294
    confidence scores and classification scores.

    $$
    score_{pred} = score_{conf} * score_{class}
    $$

295 296 297 298 299 300 301 302 303
    where the confidence scores follow the formula bellow

    .. math::

        score_{conf} = \begin{case}
                         obj, \text{if } iou_aware == flase \\
                         obj^{1 - iou_aware_factor} * iou^{iou_aware_factor}, \text{otherwise}
                       \end{case}

304 305 306 307 308
    Args:
        x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with
                      shape of [N, C, H, W]. The second dimension(C) stores box
                      locations, confidence score and classification one-hot keys
                      of each anchor box. Generally, X should be the output of
309
                      YOLOv3 network. The data type is float32 or float64.
310 311 312
        img_size (Tensor): The image size tensor of YoloBox operator, This is a
                           2-D tensor with shape of [N, 2]. This tensor holds
                           height and width of each input image used for resizing
313
                           output box in input image scale. The data type is int32.
314 315 316 317 318 319 320 321 322 323 324
        anchors (list|tuple): The anchor width and height, it will be parsed pair
                              by pair.
        class_num (int): The number of classes.
        conf_thresh (float): The confidence scores threshold of detection boxes.
                             Boxes with confidence scores under threshold should
                             be ignored.
        downsample_ratio (int): The downsample ratio from network input to
                                :attr:`yolo_box` operator input, so 32, 16, 8
                                should be set for the first, second, and thrid
                                :attr:`yolo_box` layer.
        clip_bbox (bool): Whether clip output bonding box in :attr:`img_size`
325
                          boundary. Default true.
326 327
        scale_x_y (float): Scale the center point of decoded bounding box.
                           Default 1.0
328 329
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
330
                       please refer to :ref:`api_guide_Name`
331 332
        iou_aware (bool): Whether use iou aware. Default false
        iou_aware_factor (float): iou aware factor. Default 0.5
333 334 335

    Returns:
        Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
336
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
337 338 339 340 341 342 343 344 345
        scores of boxes.

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

346
        x = np.random.random([2, 14, 8, 8]).astype('float32')
347 348 349 350 351 352 353 354 355 356 357 358 359 360
        img_size = np.ones((2, 2)).astype('int32')

        x = paddle.to_tensor(x)
        img_size = paddle.to_tensor(img_size)

        boxes, scores = paddle.vision.ops.yolo_box(x,
                                                   img_size=img_size,
                                                   anchors=[10, 13, 16, 30],
                                                   class_num=2,
                                                   conf_thresh=0.01,
                                                   downsample_ratio=8,
                                                   clip_bbox=True,
                                                   scale_x_y=1.)
    """
H
hong 已提交
361
    if in_dygraph_mode():
362 363 364 365
        boxes, scores = _C_ops.yolo_box(x, img_size, anchors, class_num,
                                        conf_thresh, downsample_ratio,
                                        clip_bbox, scale_x_y, iou_aware,
                                        iou_aware_factor)
H
hong 已提交
366 367
        return boxes, scores

J
Jiabin Yang 已提交
368
    if _non_static_mode():
369
        boxes, scores = _legacy_C_ops.yolo_box(
370 371
            x, img_size, 'anchors', anchors, 'class_num', class_num,
            'conf_thresh', conf_thresh, 'downsample_ratio', downsample_ratio,
372 373
            'clip_bbox', clip_bbox, 'scale_x_y', scale_x_y, 'iou_aware',
            iou_aware, 'iou_aware_factor', iou_aware_factor)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        return boxes, scores

    helper = LayerHelper('yolo_box', **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_box')
    check_variable_and_dtype(img_size, 'img_size', 'int32', 'yolo_box')
    check_type(anchors, 'anchors', (list, tuple), 'yolo_box')
    check_type(conf_thresh, 'conf_thresh', float, 'yolo_box')

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
        "conf_thresh": conf_thresh,
        "downsample_ratio": downsample_ratio,
        "clip_bbox": clip_bbox,
        "scale_x_y": scale_x_y,
393 394
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
395 396
    }

397 398 399 400 401 402 403 404 405 406
    helper.append_op(type='yolo_box',
                     inputs={
                         "X": x,
                         "ImgSize": img_size,
                     },
                     outputs={
                         'Boxes': boxes,
                         'Scores': scores,
                     },
                     attrs=attrs)
407
    return boxes, scores
408 409 410 411 412 413 414 415 416


def deform_conv2d(x,
                  offset,
                  weight,
                  bias=None,
                  stride=1,
                  padding=0,
                  dilation=1,
417
                  deformable_groups=1,
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                  groups=1,
                  mask=None,
                  name=None):
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width.
        bias (Tensor, optional): The bias with shape [M,].
473
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
474 475
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
476
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
477 478
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
479
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
480 481
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
482 483
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
484 485 486 487 488 489 490 491 492 493 494 495 496
        groups (int, optonal): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        mask (Tensor, optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        Tensor: The tensor variable storing the deformable convolution \
                  result. A Tensor with type float32, float64.
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight, mask=mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    use_deform_conv2d_v1 = True if mask is None else False

539
    if in_dygraph_mode():
540 541 542
        pre_bias = _C_ops.deformable_conv(x, offset, weight, mask, stride,
                                          padding, dilation, deformable_groups,
                                          groups, 1)
543 544 545 546 547
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
    elif _in_legacy_dygraph():
548
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
549 550
                 'deformable_groups', deformable_groups, 'groups', groups,
                 'im2col_step', 1)
551 552
        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
553 554
            pre_bias = getattr(_legacy_C_ops, op_type)(x, offset, weight,
                                                       *attrs)
555 556
        else:
            op_type = 'deformable_conv'
557 558
            pre_bias = getattr(_legacy_C_ops, op_type)(x, offset, mask, weight,
                                                       *attrs)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
    else:
        check_variable_and_dtype(x, "x", ['float32', 'float64'],
                                 'deform_conv2d')
        check_variable_and_dtype(offset, "offset", ['float32', 'float64'],
                                 'deform_conv2d')

        num_channels = x.shape[1]

        helper = LayerHelper('deformable_conv', **locals())
        dtype = helper.input_dtype()

        stride = utils.convert_to_list(stride, 2, 'stride')
        padding = utils.convert_to_list(padding, 2, 'padding')
        dilation = utils.convert_to_list(dilation, 2, 'dilation')

        pre_bias = helper.create_variable_for_type_inference(dtype)

        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
            }
        else:
            op_type = 'deformable_conv'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
                'Mask': mask,
            }

        outputs = {"Output": pre_bias}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
602
            'deformable_groups': deformable_groups,
603 604
            'im2col_step': 1,
        }
605 606 607 608
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
609 610 611

        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
612 613 614 615 616 617 618
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={'axis': 1})
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        else:
            out = pre_bias
    return out


class DeformConv2D(Layer):
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

S
sunzhongkai588 已提交
665 666
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
667 668 669 670 671 672


    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple): The size of the convolving kernel.
673
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
674 675
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
676
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
677 678
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
679
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
680 681
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
682 683
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
684 685 686 687 688 689 690 691 692
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
S
sunzhongkai588 已提交
693
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
694 695 696 697 698 699 700 701 702 703 704 705 706
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - offset: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`
        - mask: :math:`(N, H_f * W_f, H_{out}, W_{out})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
707

708
        Where
709

710
        ..  math::
S
sunzhongkai588 已提交
711 712 713 714

            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset, mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
765
                 deformable_groups=1,
766 767 768 769 770 771 772
                 groups=1,
                 weight_attr=None,
                 bias_attr=None):
        super(DeformConv2D, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
773
        self._deformable_groups = deformable_groups
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._channel_dim = 1

        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 2, 'kernel_size')

        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")

        self._padding = utils.convert_to_list(padding, 2, 'padding')

        filter_shape = [out_channels, in_channels // groups] + self._kernel_size

        def _get_default_param_initializer():
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self.weight = self.create_parameter(
            shape=filter_shape,
            attr=self._weight_attr,
            default_initializer=_get_default_param_initializer())
799 800 801
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._out_channels],
                                          is_bias=True)
802 803

    def forward(self, x, offset, mask=None):
804 805 806 807 808 809 810 811 812 813
        out = deform_conv2d(x=x,
                            offset=offset,
                            weight=self.weight,
                            bias=self.bias,
                            stride=self._stride,
                            padding=self._padding,
                            dilation=self._dilation,
                            deformable_groups=self._deformable_groups,
                            groups=self._groups,
                            mask=mask)
814
        return out
815 816


817 818 819 820 821 822 823 824 825
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             pixel_offset=False,
                             rois_num=None,
                             name=None):
    r"""
826 827 828 829
        In Feature Pyramid Networks (FPN) models, it is needed to distribute
    all proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order of
    proposals, we return an array which indicates the original index of rois
830
    in current proposals. To compute FPN level for each roi, the formula is given as follows:
831

832 833 834 835 836 837 838 839
    .. math::
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
    where BBoxArea is a function to compute the area of each roi.

    Args:
        fpn_rois (Tensor): The input fpn_rois. 2-D Tensor with shape [N, 4] and data type can be
            float32 or float64.
840
        min_level (int): The lowest level of FPN layer where the proposals come
841 842 843 844 845
            from.
        max_level (int): The highest level of FPN layer where the proposals
            come from.
        refer_level (int): The referring level of FPN layer with specified scale.
        refer_scale (int): The referring scale of FPN layer with specified level.
846
        pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of
847
            image shape will be 1. 'False' by default.
848
        rois_num (Tensor, optional): 1-D Tensor contains the number of RoIs in each image.
849
            The shape is [B] and data type is int32. B is the number of images.
850
            If rois_num not None, it will return a list of 1-D Tensor. Each element
851 852
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
853 854 855
        name (str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
856 857 858

    Returns:
        multi_rois (List) : The proposals in each FPN level. It is a list of 2-D Tensor with shape [M, 4], where M is
859
            and data type is same as `fpn_rois` . The length is max_level-min_level+1.
860
        restore_ind (Tensor): The index used to restore the order of fpn_rois. It is a 2-D Tensor with shape [N, 1]
861 862 863
            , where N is the number of total rois. The data type is int32.
        rois_num_per_level (List): A list of 1-D Tensor and each Tensor is
            the RoIs' number in each image on the corresponding level. The shape
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
            is [B] and data type of int32, where B is the number of images.

    Examples:
        .. code-block:: python

            import paddle

            fpn_rois = paddle.rand((10, 4))
            rois_num = paddle.to_tensor([3, 1, 4, 2], dtype=paddle.int32)

            multi_rois, restore_ind, rois_num_per_level = paddle.vision.ops.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
    """
    num_lvl = max_level - min_level + 1

884 885
    if in_dygraph_mode():
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
886
        multi_rois, rois_num_per_level, restore_ind = _C_ops.distribute_fpn_proposals(
887 888 889 890
            fpn_rois, rois_num, min_level, max_level, refer_level, refer_scale,
            pixel_offset)
        return multi_rois, restore_ind, rois_num_per_level

891 892 893 894 895
    if _non_static_mode():
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
                 refer_level, 'refer_scale', refer_scale, 'pixel_offset',
                 pixel_offset)
896
        multi_rois, restore_ind, rois_num_per_level = _legacy_C_ops.distribute_fpn_proposals(
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
            fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
        return multi_rois, restore_ind, rois_num_per_level

    else:
        check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                                 'distribute_fpn_proposals')
        helper = LayerHelper('distribute_fpn_proposals', **locals())
        dtype = helper.input_dtype('fpn_rois')
        multi_rois = [
            helper.create_variable_for_type_inference(dtype)
            for i in range(num_lvl)
        ]

        restore_ind = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'FpnRois': fpn_rois}
        outputs = {
            'MultiFpnRois': multi_rois,
            'RestoreIndex': restore_ind,
        }

        if rois_num is not None:
            inputs['RoisNum'] = rois_num
            rois_num_per_level = [
                helper.create_variable_for_type_inference(dtype='int32')
                for i in range(num_lvl)
            ]
            outputs['MultiLevelRoIsNum'] = rois_num_per_level
        else:
            rois_num_per_level = None

        helper.append_op(type='distribute_fpn_proposals',
                         inputs=inputs,
                         outputs=outputs,
                         attrs={
                             'min_level': min_level,
                             'max_level': max_level,
                             'refer_level': refer_level,
                             'refer_scale': refer_scale,
                             'pixel_offset': pixel_offset
                         })
        return multi_rois, restore_ind, rois_num_per_level


941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
def read_file(filename, name=None):
    """
    Reads and outputs the bytes contents of a file as a uint8 Tensor
    with one dimension.

    Args:
        filename (str): Path of the file to be read.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        A uint8 tensor.

    Examples:
        .. code-block:: python

            import cv2
            import paddle

961
            fake_img = (paddle.rand((400, 300, 3)).numpy() * 255).astype('uint8')
962 963 964 965

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
966

967
            print(img_bytes.shape)
968
            # [142915]
969 970
    """

J
Jiabin Yang 已提交
971
    if _non_static_mode():
972
        return _legacy_C_ops.read_file('filename', filename)
973 974 975 976 977 978

    inputs = dict()
    attrs = {'filename': filename}

    helper = LayerHelper("read_file", **locals())
    out = helper.create_variable_for_type_inference('uint8')
979 980 981 982
    helper.append_op(type="read_file",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
983 984 985 986 987 988

    return out


def decode_jpeg(x, mode='unchanged', name=None):
    """
989 990
    Decodes a JPEG image into a 3 dimensional RGB Tensor or 1 dimensional Gray Tensor.
    Optionally converts the image to the desired format.
991 992 993
    The values of the output tensor are uint8 between 0 and 255.

    Args:
994
        x (Tensor): A one dimensional uint8 tensor containing the raw bytes
995
            of the JPEG image.
996
        mode (str): The read mode used for optionally converting the image.
997 998 999 1000 1001 1002 1003 1004 1005
            Default: 'unchanged'.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A decoded image tensor with shape (imge_channels, image_height, image_width)

    Examples:
        .. code-block:: python
1006 1007

            # required: gpu
1008
            import cv2
1009
            import numpy as np
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            import paddle

            fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
            img = paddle.vision.ops.decode_jpeg(img_bytes)

            print(img.shape)
    """
Y
YuanRisheng 已提交
1022 1023 1024
    if in_dygraph_mode():
        return _C_ops.decode_jpeg(x, mode, _current_expected_place())
    elif _non_static_mode():
1025
        return _legacy_C_ops.decode_jpeg(x, "mode", mode)
1026 1027 1028 1029 1030 1031

    inputs = {'X': x}
    attrs = {"mode": mode}

    helper = LayerHelper("decode_jpeg", **locals())
    out = helper.create_variable_for_type_inference('uint8')
1032 1033 1034 1035
    helper.append_op(type="decode_jpeg",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
1036 1037

    return out
1038 1039 1040 1041 1042


def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
1043
    position-sensitive average pooling on regions of interest specified by input. It performs
1044 1045 1046 1047 1048 1049 1050
    on inputs of nonuniform sizes to obtain fixed-size feature maps.

    PSROIPooling is proposed by R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.

    Args:
        x (Tensor): Input features with shape (N, C, H, W). The data type can be float32 or float64.
        boxes (Tensor): Box coordinates of ROIs (Regions of Interest) to pool over. It should be
1051
                         a 2-D Tensor with shape (num_rois, 4). Given as [[x1, y1, x2, y2], ...],
1052 1053 1054
                         (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in the batch.
1055
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type
1056
                               is int32. If int, H and W are both equal to output_size.
1057
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
                               input scale to the scale used when pooling. Default: 1.0
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        4-D Tensor. The pooled ROIs with shape (num_rois, output_channels, pooled_h, pooled_w).
        The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Examples:
        .. code-block:: python
1069

1070 1071 1072 1073 1074
            import paddle
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0)
1075 1076
            print(pool_out.shape)
            # [3, 10, 7, 7]
1077 1078 1079 1080 1081 1082
    """

    check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)
    pooled_height, pooled_width = output_size
1083 1084
    assert len(x.shape) == 4, \
            "Input features with shape should be (N, C, H, W)"
1085
    output_channels = int(x.shape[1] / (pooled_height * pooled_width))
Z
zyfncg 已提交
1086
    if in_dygraph_mode():
1087 1088
        return _C_ops.psroi_pool(x, boxes, boxes_num, pooled_height,
                                 pooled_width, output_channels, spatial_scale)
Z
zyfncg 已提交
1089
    if _in_legacy_dygraph():
1090 1091 1092 1093 1094
        return _legacy_C_ops.psroi_pool(x, boxes, boxes_num, "output_channels",
                                        output_channels, "spatial_scale",
                                        spatial_scale, "pooled_height",
                                        pooled_height, "pooled_width",
                                        pooled_width)
1095 1096 1097 1098

    helper = LayerHelper('psroi_pool', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    helper.append_op(type='psroi_pool',
                     inputs={
                         'X': x,
                         'ROIs': boxes
                     },
                     outputs={'Out': out},
                     attrs={
                         'output_channels': output_channels,
                         'spatial_scale': spatial_scale,
                         'pooled_height': pooled_height,
                         'pooled_width': pooled_width
                     })
1111 1112 1113 1114 1115 1116 1117 1118 1119
    return out


class PSRoIPool(Layer):
    """
    This interface is used to construct a callable object of the ``PSRoIPool`` class. Please
    refer to :ref:`api_paddle_vision_ops_psroi_pool`.

    Args:
1120
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type
1121
                               is int32. If int, H and W are both equal to output_size.
1122
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                               input scale to the scale used when pooling. Default: 1.0.

    Shape:
        - x: 4-D Tensor with shape (N, C, H, W).
        - boxes: 2-D Tensor with shape (num_rois, 4).
        - boxes_num: 1-D Tensor.
        - output: 4-D tensor with shape (num_rois, output_channels, pooled_h, pooled_w).
              The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Returns:
1133
        None.
1134 1135 1136

    Examples:
        .. code-block:: python
1137

1138
            import paddle
1139

1140 1141 1142 1143 1144
            psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0)
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = psroi_module(x, boxes, boxes_num)
1145
            print(pool_out.shape) # [3, 10, 7, 7]
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    """

    def __init__(self, output_size, spatial_scale=1.0):
        super(PSRoIPool, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
        return psroi_pool(x, boxes, boxes_num, self.output_size,
                          self.spatial_scale)
W
Wenyu 已提交
1156 1157 1158 1159 1160 1161


def roi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    This operator implements the roi_pooling layer.
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
1162
    The operator has three steps: 1. Dividing each region proposal into equal-sized sections with output_size(h, w) 2. Finding the largest value in each section 3. Copying these max values to the output buffer
W
Wenyu 已提交
1163 1164 1165
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn.

    Args:
1166 1167
        x (Tensor): input feature, 4D-Tensor with the shape of [N,C,H,W],
            where N is the batch size, C is the input channel, H is Height, W is weight.
W
Wenyu 已提交
1168
            The data type is float32 or float64.
1169 1170 1171
        boxes (Tensor): boxes (Regions of Interest) to pool over.
            2D-Tensor with the shape of [num_boxes,4].
            Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
W
Wenyu 已提交
1172 1173 1174 1175 1176 1177 1178
            and (x2, y2) is the bottom right coordinates.
        boxes_num (Tensor): the number of RoIs in each image, data type is int32. Default: None
        output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
        name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.

    Returns:
1179
        pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
W
Wenyu 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.ops import roi_pool

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            pool_out = roi_pool(data, boxes, boxes_num=boxes_num, output_size=3)
            assert pool_out.shape == [3, 256, 3, 3], ''
    """

    check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
Z
zyfncg 已提交
1201 1202
    if in_dygraph_mode():
        assert boxes_num is not None, "boxes_num should not be None in dygraph mode."
1203 1204
        return _C_ops.roi_pool(x, boxes, boxes_num, pooled_height, pooled_width,
                               spatial_scale)
Z
zyfncg 已提交
1205
    if _in_legacy_dygraph():
W
Wenyu 已提交
1206
        assert boxes_num is not None, "boxes_num should not be None in dygraph mode."
1207 1208 1209
        pool_out, argmaxes = _legacy_C_ops.roi_pool(
            x, boxes, boxes_num, "pooled_height", pooled_height, "pooled_width",
            pooled_width, "spatial_scale", spatial_scale)
W
Wenyu 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        return pool_out

    else:
        check_variable_and_dtype(x, 'x', ['float32'], 'roi_pool')
        check_variable_and_dtype(boxes, 'boxes', ['float32'], 'roi_pool')
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {
            "X": x,
            "ROIs": boxes,
        }
        if boxes_num is not None:
            inputs['RoisNum'] = boxes_num
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        helper.append_op(type="roi_pool",
                         inputs=inputs,
                         outputs={
                             "Out": pool_out,
                             "Argmax": argmaxes
                         },
                         attrs={
                             "pooled_height": pooled_height,
                             "pooled_width": pooled_width,
                             "spatial_scale": spatial_scale
                         })
W
Wenyu 已提交
1237 1238 1239 1240 1241 1242
        return pool_out


class RoIPool(Layer):
    """
    This interface is used to construct a callable object of the `RoIPool` class. Please
1243
    refer to :ref:`api_paddle_vision_ops_roi_pool`.
W
Wenyu 已提交
1244 1245 1246 1247 1248 1249

    Args:
        output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.

    Returns:
1250
        pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
W
Wenyu 已提交
1251 1252 1253 1254 1255 1256

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.ops import RoIPool
1257

W
Wenyu 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            roi_pool = RoIPool(output_size=(4, 3))
            pool_out = roi_pool(data, boxes, boxes_num)
            assert pool_out.shape == [3, 256, 4, 3], ''
    """

    def __init__(self, output_size, spatial_scale=1.0):
        super(RoIPool, self).__init__()
        self._output_size = output_size
        self._spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
1274 1275 1276 1277 1278
        return roi_pool(x=x,
                        boxes=boxes,
                        boxes_num=boxes_num,
                        output_size=self._output_size,
                        spatial_scale=self._spatial_scale)
W
Wenyu 已提交
1279 1280 1281 1282

    def extra_repr(self):
        main_str = 'output_size={_output_size}, spatial_scale={_spatial_scale}'
        return main_str.format(**self.__dict__)
F
Feng Ni 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293


def roi_align(x,
              boxes,
              boxes_num,
              output_size,
              spatial_scale=1.0,
              sampling_ratio=-1,
              aligned=True,
              name=None):
    """
1294
    Implementing the roi_align layer.
F
Feng Ni 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303
    Region of Interest (RoI) Align operator (also known as RoI Align) is to
    perform bilinear interpolation on inputs of nonuniform sizes to obtain
    fixed-size feature maps (e.g. 7*7), as described in Mask R-CNN.

    Dividing each region proposal into equal-sized sections with the pooled_width
    and pooled_height. Location remains the origin result.

    In each ROI bin, the value of the four regularly sampled locations are
    computed directly through bilinear interpolation. The output is the mean of
1304
    four locations. Thus avoid the misaligned problem.
F
Feng Ni 已提交
1305 1306

    Args:
1307
        x (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
F
Feng Ni 已提交
1308 1309
            where N is the batch size, C is the input channel, H is Height,
            W is weight. The data type is float32 or float64.
1310
        boxes (Tensor): Boxes (RoIs, Regions of Interest) to pool over. It
F
Feng Ni 已提交
1311 1312 1313 1314 1315 1316 1317
            should be a 2-D Tensor of shape (num_boxes, 4). The data type is
            float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
            the top left coordinates, and (x2, y2) is the bottom right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in
            the batch, the data type is int32.
        output_size (int or Tuple[int, int]): The pooled output size(h, w), data
            type is int32. If int, h and w are both equal to output_size.
1318
        spatial_scale (float32, optional): Multiplicative spatial scale factor to translate
F
Feng Ni 已提交
1319
            ROI coords from their input scale to the scale used when pooling.
1320 1321
            Default: 1.0.
        sampling_ratio (int32, optional): number of sampling points in the interpolation
F
Feng Ni 已提交
1322 1323 1324 1325 1326
            grid used to compute the output value of each pooled output bin.
            If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling
            points per bin are used.
            If <= 0, then an adaptive number of grid points are used (computed
            as ``ceil(roi_width / output_width)``, and likewise for height).
1327 1328
            Default: -1.
        aligned (bool, optional): If False, use the legacy implementation. If True, pixel
F
Feng Ni 已提交
1329 1330
            shift the box coordinates it by -0.5 for a better alignment with the
            two neighboring pixel indices. This version is used in Detectron2.
1331
            Default: True.
F
Feng Ni 已提交
1332 1333 1334 1335 1336
        name(str, optional): For detailed information, please refer to :
            ref:`api_guide_Name`. Usually name is no need to set and None by
            default.

    Returns:
1337
        The output of ROIAlignOp is a 4-D tensor with shape (num_boxes,
F
Feng Ni 已提交
1338 1339 1340 1341
            channels, pooled_h, pooled_w). The data type is float32 or float64.

    Examples:
        .. code-block:: python
1342

F
Feng Ni 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            import paddle
            from paddle.vision.ops import roi_align

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            align_out = roi_align(data, boxes, boxes_num, output_size=3)
            assert align_out.shape == [3, 256, 3, 3]
    """

    check_type(output_size, 'output_size', (int, tuple), 'roi_align')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
1360 1361
    if in_dygraph_mode():
        assert boxes_num is not None, "boxes_num should not be None in dygraph mode."
1362 1363 1364
        return _C_ops.roi_align(x, boxes, boxes_num, pooled_height,
                                pooled_width, spatial_scale, sampling_ratio,
                                aligned)
1365
    if _in_legacy_dygraph():
F
Feng Ni 已提交
1366
        assert boxes_num is not None, "boxes_num should not be None in dygraph mode."
1367 1368 1369 1370 1371 1372
        align_out = _legacy_C_ops.roi_align(x, boxes, boxes_num,
                                            "pooled_height", pooled_height,
                                            "pooled_width", pooled_width,
                                            "spatial_scale", spatial_scale,
                                            "sampling_ratio", sampling_ratio,
                                            "aligned", aligned)
F
Feng Ni 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        return align_out

    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'roi_align')
        check_variable_and_dtype(boxes, 'boxes', ['float32', 'float64'],
                                 'roi_align')
        helper = LayerHelper('roi_align', **locals())
        dtype = helper.input_dtype()
        align_out = helper.create_variable_for_type_inference(dtype)
        inputs = {
            "X": x,
            "ROIs": boxes,
        }
        if boxes_num is not None:
            inputs['RoisNum'] = boxes_num
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        helper.append_op(type="roi_align",
                         inputs=inputs,
                         outputs={"Out": align_out},
                         attrs={
                             "pooled_height": pooled_height,
                             "pooled_width": pooled_width,
                             "spatial_scale": spatial_scale,
                             "sampling_ratio": sampling_ratio,
                             "aligned": aligned,
                         })
F
Feng Ni 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
        return align_out


class RoIAlign(Layer):
    """
    This interface is used to construct a callable object of the `RoIAlign` class.
    Please refer to :ref:`api_paddle_vision_ops_roi_align`.

    Args:
        output_size (int or tuple[int, int]): The pooled output size(h, w),
            data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float32, optional): Multiplicative spatial scale factor
            to translate ROI coords from their input scale to the scale used
            when pooling. Default: 1.0

    Returns:
1414
        The output of ROIAlign operator is a 4-D tensor with
F
Feng Ni 已提交
1415 1416 1417 1418
            shape (num_boxes, channels, pooled_h, pooled_w).

    Examples:
        ..  code-block:: python
1419

F
Feng Ni 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
            import paddle
            from paddle.vision.ops import RoIAlign

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            roi_align = RoIAlign(output_size=(4, 3))
            align_out = roi_align(data, boxes, boxes_num)
            assert align_out.shape == [3, 256, 4, 3]
    """

    def __init__(self, output_size, spatial_scale=1.0):
        super(RoIAlign, self).__init__()
        self._output_size = output_size
        self._spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num, aligned=True):
1439 1440 1441 1442 1443 1444
        return roi_align(x=x,
                         boxes=boxes,
                         boxes_num=boxes_num,
                         output_size=self._output_size,
                         spatial_scale=self._spatial_scale,
                         aligned=aligned)
N
Nyakku Shigure 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454


class ConvNormActivation(Sequential):
    """
    Configurable block used for Convolution-Normalzation-Activation blocks.
    This code is based on the torchvision code with modifications.
    You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L68
    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
1455 1456 1457
        kernel_size: (int|list|tuple, optional): Size of the convolving kernel. Default: 3
        stride (int|list|tuple, optional): Stride of the convolution. Default: 1
        padding (int|str|tuple|list, optional): Padding added to all four sides of the input. Default: None,
N
Nyakku Shigure 已提交
1458 1459 1460
            in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., paddle.nn.Layer], optional): Norm layer that will be stacked on top of the convolutiuon layer.
1461
            If ``None`` this layer wont be used. Default: ``paddle.nn.BatchNorm2D``
N
Nyakku Shigure 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        activation_layer (Callable[..., paddle.nn.Layer], optional): Activation function which will be stacked on top of the normalization
            layer (if not ``None``), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``paddle.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=None,
                 groups=1,
                 norm_layer=BatchNorm2D,
                 activation_layer=ReLU,
                 dilation=1,
                 bias=None):
        if padding is None:
            padding = (kernel_size - 1) // 2 * dilation
        if bias is None:
            bias = norm_layer is None
        layers = [
1484 1485 1486 1487 1488 1489 1490 1491
            Conv2D(in_channels,
                   out_channels,
                   kernel_size,
                   stride,
                   padding,
                   dilation=dilation,
                   groups=groups,
                   bias_attr=bias)
N
Nyakku Shigure 已提交
1492 1493 1494 1495 1496 1497
        ]
        if norm_layer is not None:
            layers.append(norm_layer(out_channels))
        if activation_layer is not None:
            layers.append(activation_layer())
        super().__init__(*layers)
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507


def nms(boxes,
        iou_threshold=0.3,
        scores=None,
        category_idxs=None,
        categories=None,
        top_k=None):
    r"""
    This operator implements non-maximum suppression. Non-maximum suppression (NMS)
1508 1509 1510
    is used to select one bounding box out of many overlapping bounding boxes in object detection.
    Boxes with IoU > iou_threshold will be considered as overlapping boxes,
    just one with highest score can be kept. Here IoU is Intersection Over Union,
1511 1512 1513 1514 1515 1516 1517
    which can be computed by:

    ..  math::

        IoU = \frac{intersection\_area(box1, box2)}{union\_area(box1, box2)}

    If scores are provided, input boxes will be sorted by their scores firstly.
R
RichardWooSJTU 已提交
1518

1519
    If category_idxs and categories are provided, NMS will be performed with a batched style,
1520 1521
    which means NMS will be applied to each category respectively and results of each category
    will be concated and sorted by scores.
1522

1523 1524 1525
    If K is provided, only the first k elements will be returned. Otherwise, all box indices sorted by scores will be returned.

    Args:
1526 1527 1528 1529
        boxes(Tensor): The input boxes data to be computed, it's a 2D-Tensor with
            the shape of [num_boxes, 4]. The data type is float32 or float64.
            Given as [[x1, y1, x2, y2], …],  (x1, y1) is the top left coordinates,
            and (x2, y2) is the bottom right coordinates.
1530
            Their relation should be ``0 <= x1 < x2 && 0 <= y1 < y2``.
R
RichardWooSJTU 已提交
1531
        iou_threshold(float32, optional): IoU threshold for determine overlapping boxes. Default value: 0.3.
1532
        scores(Tensor, optional): Scores corresponding to boxes, it's a 1D-Tensor with
R
RichardWooSJTU 已提交
1533
            shape of [num_boxes]. The data type is float32 or float64. Default: None.
1534
        category_idxs(Tensor, optional): Category indices corresponding to boxes.
R
RichardWooSJTU 已提交
1535 1536
            it's a 1D-Tensor with shape of [num_boxes]. The data type is int64. Default: None.
        categories(List, optional): A list of unique id of all categories. The data type is int64. Default: None.
1537
        top_k(int64, optional): The top K boxes who has higher score and kept by NMS preds to
R
RichardWooSJTU 已提交
1538
            consider. top_k should be smaller equal than num_boxes. Default: None.
1539 1540 1541 1542 1543 1544

    Returns:
        Tensor: 1D-Tensor with the shape of [num_boxes]. Indices of boxes kept by NMS.

    Examples:
        .. code-block:: python
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
            import paddle
            import numpy as np

            boxes = np.random.rand(4, 4).astype('float32')
            boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
            boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
            # [[0.06287421 0.5809351  0.3443958  0.8713329 ]
            #  [0.0749094  0.9713205  0.99241287 1.2799143 ]
            #  [0.46246734 0.6753201  1.346266   1.3821303 ]
            #  [0.8984796  0.5619834  1.1254641  1.0201943 ]]

            out =  paddle.vision.ops.nms(paddle.to_tensor(boxes), 0.1)
            # [0, 1, 3, 0]

            scores = np.random.rand(4).astype('float32')
            # [0.98015213 0.3156527  0.8199343  0.874901 ]

            categories = [0, 1, 2, 3]
1564
            category_idxs = np.random.choice(categories, 4)
1565 1566
            # [2 0 0 3]

1567 1568 1569 1570 1571
            out =  paddle.vision.ops.nms(paddle.to_tensor(boxes),
                                                    0.1,
                                                    paddle.to_tensor(scores),
                                                    paddle.to_tensor(category_idxs),
                                                    categories,
1572 1573 1574 1575 1576
                                                    4)
            # [0, 3, 2]
    """

    def _nms(boxes, iou_threshold):
1577
        if in_dygraph_mode():
1578
            return _C_ops.nms(boxes, iou_threshold)
1579

1580
        if _non_static_mode():
1581
            return _legacy_C_ops.nms(boxes, 'iou_threshold', iou_threshold)
1582 1583 1584

        helper = LayerHelper('nms', **locals())
        out = helper.create_variable_for_type_inference('int64')
1585 1586 1587 1588
        helper.append_op(type='nms',
                         inputs={'Boxes': boxes},
                         outputs={'KeepBoxesIdxs': out},
                         attrs={'iou_threshold': iou_threshold})
1589 1590 1591 1592 1593 1594 1595 1596
        return out

    if scores is None:
        return _nms(boxes, iou_threshold)

    import paddle
    if category_idxs is None:
        sorted_global_indices = paddle.argsort(scores, descending=True)
1597 1598 1599
        sorted_keep_boxes_indices = _nms(boxes[sorted_global_indices],
                                         iou_threshold)
        return sorted_global_indices[sorted_keep_boxes_indices]
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

    if top_k is not None:
        assert top_k <= scores.shape[
            0], "top_k should be smaller equal than the number of boxes"
    assert categories is not None, "if category_idxs is given, categories which is a list of unique id of all categories is necessary"

    mask = paddle.zeros_like(scores, dtype=paddle.int32)

    for category_id in categories:
        cur_category_boxes_idxs = paddle.where(category_idxs == category_id)[0]
        shape = cur_category_boxes_idxs.shape[0]
        cur_category_boxes_idxs = paddle.reshape(cur_category_boxes_idxs,
                                                 [shape])
        if shape == 0:
            continue
        elif shape == 1:
            mask[cur_category_boxes_idxs] = 1
            continue
        cur_category_boxes = boxes[cur_category_boxes_idxs]
        cur_category_scores = scores[cur_category_boxes_idxs]
1620 1621
        cur_category_sorted_indices = paddle.argsort(cur_category_scores,
                                                     descending=True)
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        cur_category_sorted_boxes = cur_category_boxes[
            cur_category_sorted_indices]

        cur_category_keep_boxes_sub_idxs = cur_category_sorted_indices[_nms(
            cur_category_sorted_boxes, iou_threshold)]

        updates = paddle.ones_like(
            cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs],
            dtype=paddle.int32)
        mask = paddle.scatter(
            mask,
            cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs],
            updates,
            overwrite=True)
    keep_boxes_idxs = paddle.where(mask)[0]
    shape = keep_boxes_idxs.shape[0]
    keep_boxes_idxs = paddle.reshape(keep_boxes_idxs, [shape])
1639 1640
    sorted_sub_indices = paddle.argsort(scores[keep_boxes_idxs],
                                        descending=True)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

    if top_k is None:
        return keep_boxes_idxs[sorted_sub_indices]

    if _non_static_mode():
        top_k = shape if shape < top_k else top_k
        _, topk_sub_indices = paddle.topk(scores[keep_boxes_idxs], top_k)
        return keep_boxes_idxs[topk_sub_indices]

    return keep_boxes_idxs[sorted_sub_indices][:top_k]
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667


def generate_proposals(scores,
                       bbox_deltas,
                       img_size,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       pixel_offset=False,
                       return_rois_num=False,
                       name=None):
    """
    This operation proposes RoIs according to each box with their
1668 1669
    probability to be a foreground object. And
    the proposals of RPN output are  calculated by anchors, bbox_deltas and scores. Final proposals
1670 1671 1672 1673 1674 1675
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

    1. Transpose and resize scores and bbox_deltas in size of
       (H * W * A, 1) and (H * W * A, 4)
1676
    2. Calculate box locations as proposals candidates.
1677
    3. Clip boxes to image
1678
    4. Remove predicted boxes with small area.
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    5. Apply non-maximum suppression (NMS) to get final proposals as output.

    Args:
        scores (Tensor): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map. The data type must be float32.
        bbox_deltas (Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the difference between predicted box location and
            anchor location. The data type must be float32.
        img_size (Tensor): A 2-D Tensor with shape [N, 2] represents origin
            image shape information for N batch, including height and width of the input sizes.
            The data type can be float32 or float64.
        anchors (Tensor):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances (Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format. The data type must be float32.
        pre_nms_top_n (float, optional): Number of total bboxes to be kept per
            image before NMS. `6000` by default.
        post_nms_top_n (float, optional): Number of total bboxes to be kept per
            image after NMS. `1000` by default.
        nms_thresh (float, optional): Threshold in NMS. The data type must be float32. `0.5` by default.
        min_size (float, optional): Remove predicted boxes with either height or
            width less than this value. `0.1` by default.
        eta(float, optional): Apply in adaptive NMS, only works if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration. 1.0 by default.
        pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of `img_size` will be 1. 'False' by default.
        return_rois_num (bool, optional): Whether to return `rpn_rois_num` . When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
            num of each image in one batch. 'False' by default.
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

    Returns:
        - rpn_rois (Tensor): The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - rpn_roi_probs (Tensor): The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - rpn_rois_num (Tensor): Rois's num of each image in one batch. 1-D Tensor with shape ``[B,]`` while ``B`` is the batch size. And its sum equals to RoIs number ``N`` .

    Examples:
        .. code-block:: python

            import paddle

            scores = paddle.rand((2,4,5,5), dtype=paddle.float32)
            bbox_deltas = paddle.rand((2, 16, 5, 5), dtype=paddle.float32)
            img_size = paddle.to_tensor([[224.0, 224.0], [224.0, 224.0]])
            anchors = paddle.rand((2,5,4,4), dtype=paddle.float32)
            variances = paddle.rand((2,5,10,4), dtype=paddle.float32)
            rois, roi_probs, roi_nums = paddle.vision.ops.generate_proposals(scores, bbox_deltas,
                         img_size, anchors, variances, return_rois_num=True)
            print(rois, roi_probs, roi_nums)
    """

Z
zhiboniu 已提交
1735 1736 1737 1738
    if in_dygraph_mode():
        assert return_rois_num, "return_rois_num should be True in dygraph mode."
        attrs = (pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, eta,
                 pixel_offset)
1739
        rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
Z
zhiboniu 已提交
1740 1741 1742 1743
            scores, bbox_deltas, img_size, anchors, variances, *attrs)

        return rpn_rois, rpn_roi_probs, rpn_rois_num
    elif _non_static_mode():
1744 1745 1746 1747
        assert return_rois_num, "return_rois_num should be True in dygraph mode."
        attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
                 'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta,
                 'pixel_offset', pixel_offset)
1748
        rpn_rois, rpn_roi_probs, rpn_rois_num = _legacy_C_ops.generate_proposals_v2(
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            scores, bbox_deltas, img_size, anchors, variances, *attrs)

        return rpn_rois, rpn_roi_probs, rpn_rois_num

    helper = LayerHelper('generate_proposals_v2', **locals())

    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'generate_proposals_v2')
    check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
                             'generate_proposals_v2')
    check_variable_and_dtype(img_size, 'img_size', ['float32', 'float64'],
                             'generate_proposals_v2')
    check_variable_and_dtype(anchors, 'anchors', ['float32'],
                             'generate_proposals_v2')
    check_variable_and_dtype(variances, 'variances', ['float32'],
                             'generate_proposals_v2')

    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
    outputs = {
        'RpnRois': rpn_rois,
        'RpnRoiProbs': rpn_roi_probs,
    }
    if return_rois_num:
        rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rpn_rois_num.stop_gradient = True
        outputs['RpnRoisNum'] = rpn_rois_num

    helper.append_op(type="generate_proposals_v2",
                     inputs={
                         'Scores': scores,
                         'BboxDeltas': bbox_deltas,
                         'ImShape': img_size,
                         'Anchors': anchors,
                         'Variances': variances
                     },
                     attrs={
                         'pre_nms_topN': pre_nms_top_n,
                         'post_nms_topN': post_nms_top_n,
                         'nms_thresh': nms_thresh,
                         'min_size': min_size,
                         'eta': eta,
                         'pixel_offset': pixel_offset
                     },
                     outputs=outputs)
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
    if not return_rois_num:
        rpn_rois_num = None

    return rpn_rois, rpn_roi_probs, rpn_rois_num
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892


def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               return_rois_num=True,
               name=None):
    """
    This operator does matrix non maximum suppression (NMS).
    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
    Args:
        bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Tensor): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        return_rois_num(bool): whether return rois_num. Default: True
        name(str): Name of the matrix nms op. Default: None.
    Returns:
        A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
        otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
        Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.
        rois_num (Tensor): A 1-D Tensor with shape [N] containing
            the number of detected boxes in each image.
    Examples:
        .. code-block:: python
            import paddle
            from paddle.vision.ops import matrix_nms
            boxes = paddle.rand([4, 1, 4])
            boxes[..., 2] = boxes[..., 0] + boxes[..., 2]
            boxes[..., 3] = boxes[..., 1] + boxes[..., 3]
            scores = paddle.rand([4, 80, 1])
            out = matrix_nms(bboxes=boxes, scores=scores, background_label=0,
                                 score_threshold=0.5, post_threshold=0.1,
                                 nms_top_k=400, keep_top_k=200, normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    if in_dygraph_mode():
1893 1894 1895 1896 1897
        out, index, rois_num = _C_ops.matrix_nms(bboxes, scores,
                                                 score_threshold, nms_top_k,
                                                 keep_top_k, post_threshold,
                                                 use_gaussian, gaussian_sigma,
                                                 background_label, normalized)
Z
zhiboniu 已提交
1898 1899 1900 1901 1902 1903
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return out, rois_num, index
    elif _in_legacy_dygraph():
1904 1905 1906 1907 1908
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'post_threshold', post_threshold, 'nms_top_k',
                 nms_top_k, 'gaussian_sigma', gaussian_sigma, 'use_gaussian',
                 use_gaussian, 'keep_top_k', keep_top_k, 'normalized',
                 normalized)
1909
        out, index, rois_num = _legacy_C_ops.matrix_nms(bboxes, scores, *attrs)
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return out, rois_num, index
    else:
        helper = LayerHelper('matrix_nms', **locals())
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')
        outputs = {'Out': output, 'Index': index}
        if return_rois_num:
            rois_num = helper.create_variable_for_type_inference(dtype='int32')
            outputs['RoisNum'] = rois_num

        helper.append_op(type="matrix_nms",
                         inputs={
                             'BBoxes': bboxes,
                             'Scores': scores
                         },
                         attrs={
                             'background_label': background_label,
                             'score_threshold': score_threshold,
                             'post_threshold': post_threshold,
                             'nms_top_k': nms_top_k,
                             'gaussian_sigma': gaussian_sigma,
                             'use_gaussian': use_gaussian,
                             'keep_top_k': keep_top_k,
                             'normalized': normalized
                         },
                         outputs=outputs)
        output.stop_gradient = True

        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return output, rois_num, index