未验证 提交 6d62769a 编写于 作者: W Wenyu 提交者: GitHub

Add roi pool (#35084)

* add roi pool

* rename input as x
上级 6841d4d4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from paddle.vision.ops import roi_pool, RoIPool
class TestRoIPool(unittest.TestCase):
def setUp(self):
self.data = np.random.rand(1, 256, 32, 32).astype('float32')
boxes = np.random.rand(3, 4)
boxes[:, 2] += boxes[:, 0] + 3
boxes[:, 3] += boxes[:, 1] + 4
self.boxes = boxes.astype('float32')
self.boxes_num = np.array([3], dtype=np.int32)
def roi_pool_functional(self, output_size):
if isinstance(output_size, int):
output_shape = (3, 256, output_size, output_size)
else:
output_shape = (3, 256, output_size[0], output_size[1])
if paddle.in_dynamic_mode():
data = paddle.to_tensor(self.data)
boxes = paddle.to_tensor(self.boxes)
boxes_num = paddle.to_tensor(self.boxes_num)
pool_out = roi_pool(
data, boxes, boxes_num=boxes_num, output_size=output_size)
np.testing.assert_equal(pool_out.shape, output_shape)
else:
data = paddle.static.data(
shape=self.data.shape, dtype=self.data.dtype, name='data')
boxes = paddle.static.data(
shape=self.boxes.shape, dtype=self.boxes.dtype, name='boxes')
boxes_num = paddle.static.data(
shape=self.boxes_num.shape,
dtype=self.boxes_num.dtype,
name='boxes_num')
pool_out = roi_pool(
data, boxes, boxes_num=boxes_num, output_size=output_size)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
pool_out = exe.run(paddle.static.default_main_program(),
feed={
'data': self.data,
'boxes': self.boxes,
'boxes_num': self.boxes_num
},
fetch_list=[pool_out])
np.testing.assert_equal(pool_out[0].shape, output_shape)
def test_roi_pool_functional_dynamic(self):
self.roi_pool_functional(3)
self.roi_pool_functional(output_size=(3, 4))
def test_roi_pool_functional_static(self):
paddle.enable_static()
self.roi_pool_functional(3)
paddle.disable_static()
def test_RoIPool(self):
roi_pool_c = RoIPool(output_size=(4, 3))
data = paddle.to_tensor(self.data)
boxes = paddle.to_tensor(self.boxes)
boxes_num = paddle.to_tensor(self.boxes_num)
pool_out = roi_pool_c(data, boxes, boxes_num)
np.testing.assert_equal(pool_out.shape, (3, 256, 4, 3))
def test_value(self, ):
data = np.array([i for i in range(1, 17)]).reshape(1, 1, 4,
4).astype(np.float32)
boxes = np.array(
[[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(np.float32)
boxes_num = np.array([2]).astype(np.int32)
output = np.array([[[[11.]]], [[[16.]]]], dtype=np.float32)
data = paddle.to_tensor(data)
boxes = paddle.to_tensor(boxes)
boxes_num = paddle.to_tensor(boxes_num)
roi_pool_c = RoIPool(output_size=1)
pool_out = roi_pool_c(data, boxes, boxes_num)
np.testing.assert_almost_equal(pool_out.numpy(), output)
if __name__ == '__main__':
unittest.main()
......@@ -30,6 +30,8 @@ __all__ = [ #noqa
'DeformConv2D',
'read_file',
'decode_jpeg',
'roi_pool',
'RoIPool',
'psroi_pool',
'PSRoIPool',
]
......@@ -1013,3 +1015,126 @@ class PSRoIPool(Layer):
def forward(self, x, boxes, boxes_num):
return psroi_pool(x, boxes, boxes_num, self.output_size,
self.spatial_scale)
def roi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
"""
This operator implements the roi_pooling layer.
Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
The operator has three steps: 1. Dividing each region proposal into equal-sized sections with output_size(h, w) 2. Finding the largest value in each section 3. Copying these max values to the output buffer
For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn.
Args:
x (Tensor): input feature, 4D-Tensor with the shape of [N,C,H,W],
where N is the batch size, C is the input channel, H is Height, W is weight.
The data type is float32 or float64.
boxes (Tensor): boxes (Regions of Interest) to pool over.
2D-Tensor with the shape of [num_boxes,4].
Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
and (x2, y2) is the bottom right coordinates.
boxes_num (Tensor): the number of RoIs in each image, data type is int32. Default: None
output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
Returns:
pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
Examples:
.. code-block:: python
import paddle
from paddle.vision.ops import roi_pool
data = paddle.rand([1, 256, 32, 32])
boxes = paddle.rand([3, 4])
boxes[:, 2] += boxes[:, 0] + 3
boxes[:, 3] += boxes[:, 1] + 4
boxes_num = paddle.to_tensor([3]).astype('int32')
pool_out = roi_pool(data, boxes, boxes_num=boxes_num, output_size=3)
assert pool_out.shape == [3, 256, 3, 3], ''
"""
check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
if isinstance(output_size, int):
output_size = (output_size, output_size)
pooled_height, pooled_width = output_size
if in_dygraph_mode():
assert boxes_num is not None, "boxes_num should not be None in dygraph mode."
pool_out, argmaxes = core.ops.roi_pool(
x, boxes, boxes_num, "pooled_height", pooled_height, "pooled_width",
pooled_width, "spatial_scale", spatial_scale)
return pool_out
else:
check_variable_and_dtype(x, 'x', ['float32'], 'roi_pool')
check_variable_and_dtype(boxes, 'boxes', ['float32'], 'roi_pool')
helper = LayerHelper('roi_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
argmaxes = helper.create_variable_for_type_inference(dtype='int32')
inputs = {
"X": x,
"ROIs": boxes,
}
if boxes_num is not None:
inputs['RoisNum'] = boxes_num
helper.append_op(
type="roi_pool",
inputs=inputs,
outputs={"Out": pool_out,
"Argmax": argmaxes},
attrs={
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"spatial_scale": spatial_scale
})
return pool_out
class RoIPool(Layer):
"""
This interface is used to construct a callable object of the `RoIPool` class. Please
refer to :ref:`api_paddle_vision_ops_roi_pool`.
Args:
output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.
Returns:
pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
Examples:
.. code-block:: python
import paddle
from paddle.vision.ops import RoIPool
data = paddle.rand([1, 256, 32, 32])
boxes = paddle.rand([3, 4])
boxes[:, 2] += boxes[:, 0] + 3
boxes[:, 3] += boxes[:, 1] + 4
boxes_num = paddle.to_tensor([3]).astype('int32')
roi_pool = RoIPool(output_size=(4, 3))
pool_out = roi_pool(data, boxes, boxes_num)
assert pool_out.shape == [3, 256, 4, 3], ''
"""
def __init__(self, output_size, spatial_scale=1.0):
super(RoIPool, self).__init__()
self._output_size = output_size
self._spatial_scale = spatial_scale
def forward(self, x, boxes, boxes_num):
return roi_pool(
x=x,
boxes=boxes,
boxes_num=boxes_num,
output_size=self._output_size,
spatial_scale=self._spatial_scale)
def extra_repr(self):
main_str = 'output_size={_output_size}, spatial_scale={_spatial_scale}'
return main_str.format(**self.__dict__)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册