ops.py 40.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..fluid import core, layers
19 20 21
from ..fluid.layers import nn, utils
from ..nn import Layer
from ..fluid.initializer import Normal
22 23

from paddle.common_ops_import import *
W
wanghuancoder 已提交
24
from paddle import _C_ops
25

26 27 28 29 30 31
__all__ = [ #noqa
    'yolo_loss',
    'yolo_box',
    'deform_conv2d',
    'DeformConv2D',
    'read_file',
32 33 34
    'decode_jpeg',
    'psroi_pool',
    'PSRoIPool',
35
]
36 37 38 39 40 41 42 43 44 45 46 47 48 49


def yolo_loss(x,
              gt_box,
              gt_label,
              anchors,
              anchor_mask,
              class_num,
              ignore_thresh,
              downsample_ratio,
              gt_score=None,
              use_label_smooth=True,
              name=None,
              scale_x_y=1.):
50
    r"""
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    This operator generates YOLOv3 loss based on given predict result and ground
    truth boxes.
    
    The output of previous network is in shape [N, C, H, W], while H and W
    should be the same, H and W specify the grid size, each grid point predict 
    given number bounding boxes, this given number, which following will be represented as S,
    is specified by the number of anchor clusters in each scale. In the second dimension(the channel
    dimension), C should be equal to S * (class_num + 5), class_num is the object 
    category number of source dataset(such as 80 in coco dataset), so in the 
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
    also includes confidence score of the box and class one-hot key of each anchor box.

    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
    should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    In the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    As for confidence score, it is the logistic regression value of IoU between
    anchor boxes and ground truth boxes, the score of the anchor box which has 
    the max IoU should be 1, and if the anchor box has IoU bigger than ignore 
    thresh, the confidence score loss of this anchor box will be ignored.

    Therefore, the YOLOv3 loss consists of three major parts: box location loss,
    objectness loss and classification loss. The L1 loss is used for 
    box coordinates (w, h), sigmoid cross entropy loss is used for box 
    coordinates (x, y), objectness loss and classification loss.

    Each groud truth box finds a best matching anchor box in all anchors. 
    Prediction of this anchor box will incur all three parts of losses, and
    prediction of anchor boxes with no GT box matched will only incur objectness
    loss.

    In order to trade off box coordinate losses between big boxes and small 
    boxes, box coordinate losses will be mutiplied by scale weight, which is
    calculated as follows.

    $$
    weight_{box} = 2.0 - t_w * t_h
    $$

    Final loss will be represented as follows.

    $$
S
sunzhongkai588 已提交
109
    loss = (loss_{xy} + loss_{wh}) * weight_{box} + loss_{conf} + loss_{class}
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    $$

    While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
    target will be smoothed when calculating classification loss, target of 
    positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
    negetive samples will be smoothed to :math:`1.0 / class\_num`.

    While :attr:`gt_score` is given, which means the mixup score of ground truth 
    boxes, all losses incured by a ground truth box will be multiplied by its 
    mixup score.

    Args:
        x (Tensor): The input tensor of YOLOv3 loss operator, This is a 4-D
                      tensor with shape of [N, C, H, W]. H and W should be same,
                      and the second dimension(C) stores box locations, confidence
                      score and classification one-hot keys of each anchor box.
                      The data type is float32 or float64. 
        gt_box (Tensor): groud truth boxes, should be in shape of [N, B, 4],
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
                          N is the batch number and B is the max box number in 
                          an image.The data type is float32 or float64. 
        gt_label (Tensor): class id of ground truth boxes, should be in shape
                            of [N, B].The data type is int32. 
        anchors (list|tuple): The anchor width and height, it will be parsed
                              pair by pair.
        anchor_mask (list|tuple): The mask index of anchors used in current
                                  YOLOv3 loss calculation.
        class_num (int): The number of classes.
        ignore_thresh (float): The ignore threshold to ignore confidence loss.
        downsample_ratio (int): The downsample ratio from network input to YOLOv3
                                loss input, so 32, 16, 8 should be set for the
                                first, second, and thrid YOLOv3 loss operators. 
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
        gt_score (Tensor): mixup score of ground truth boxes, should be in shape
                            of [N, B]. Default None.
        use_label_smooth (bool): Whether to use label smooth. Default True. 
        scale_x_y (float): Scale the center point of decoded bounding box.
                           Default 1.0

    Returns:
        Tensor: A 1-D tensor with shape [N], the value of yolov3 loss

    Raises:
        TypeError: Input x of yolov3_loss must be Tensor
        TypeError: Input gtbox of yolov3_loss must be Tensor 
        TypeError: Input gtlabel of yolov3_loss must be Tensor 
        TypeError: Input gtscore of yolov3_loss must be None or Tensor 
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value

    Examples:
      .. code-block:: python

          import paddle
          import numpy as np

          x = np.random.random([2, 14, 8, 8]).astype('float32')
          gt_box = np.random.random([2, 10, 4]).astype('float32')
          gt_label = np.random.random([2, 10]).astype('int32')

          x = paddle.to_tensor(x)
          gt_box = paddle.to_tensor(gt_box)
          gt_label = paddle.to_tensor(gt_label)

          loss = paddle.vision.ops.yolo_loss(x,
                                             gt_box=gt_box,
                                             gt_label=gt_label,
                                             anchors=[10, 13, 16, 30],
                                             anchor_mask=[0, 1],
                                             class_num=2,
                                             ignore_thresh=0.7,
                                             downsample_ratio=8,
                                             use_label_smooth=True,
                                             scale_x_y=1.)
    """

    if in_dygraph_mode() and gt_score is None:
W
wanghuancoder 已提交
194
        loss = _C_ops.yolov3_loss(
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
            x, gt_box, gt_label, 'anchors', anchors, 'anchor_mask', anchor_mask,
            'class_num', class_num, 'ignore_thresh', ignore_thresh,
            'downsample_ratio', downsample_ratio, 'use_label_smooth',
            use_label_smooth, 'scale_x_y', scale_x_y)
        return loss

    helper = LayerHelper('yolov3_loss', **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_loss')
    check_variable_and_dtype(gt_box, 'gt_box', ['float32', 'float64'],
                             'yolo_loss')
    check_variable_and_dtype(gt_label, 'gt_label', 'int32', 'yolo_loss')
    check_type(anchors, 'anchors', (list, tuple), 'yolo_loss')
    check_type(anchor_mask, 'anchor_mask', (list, tuple), 'yolo_loss')
    check_type(class_num, 'class_num', int, 'yolo_loss')
    check_type(ignore_thresh, 'ignore_thresh', float, 'yolo_loss')
    check_type(use_label_smooth, 'use_label_smooth', bool, 'yolo_loss')

    loss = helper.create_variable_for_type_inference(dtype=x.dtype)

    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

    inputs = {
        "X": x,
        "GTBox": gt_box,
        "GTLabel": gt_label,
    }
    if gt_score is not None:
        inputs["GTScore"] = gt_score

    attrs = {
        "anchors": anchors,
        "anchor_mask": anchor_mask,
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
        "downsample_ratio": downsample_ratio,
        "use_label_smooth": use_label_smooth,
        "scale_x_y": scale_x_y,
    }

    helper.append_op(
        type='yolov3_loss',
        inputs=inputs,
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
        attrs=attrs)
    return loss


def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             clip_bbox=True,
             name=None,
256 257 258
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
259
    r"""
260 261 262 263 264 265 266

    This operator generates YOLO detection boxes from output of YOLOv3 network.
    
    The output of previous network is in shape [N, C, H, W], while H and W
    should be the same, H and W specify the grid size, each grid point predict 
    given number boxes, this given number, which following will be represented as S,
    is specified by the number of anchors. In the second dimension(the channel
267 268
    dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false,
    otherwise C should be equal to S * (6 + class_num). class_num is the object
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    category number of source dataset(such as 80 in coco dataset), so the 
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
    also includes confidence score of the box and class one-hot key of each anchor 
    box.

    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box 
    predictions should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    in the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    The logistic regression value of the 5th channel of each anchor prediction boxes
    represents the confidence score of each prediction box, and the logistic
    regression value of the last :attr:`class_num` channels of each anchor prediction 
    boxes represents the classifcation scores. Boxes with confidence scores less than
    :attr:`conf_thresh` should be ignored, and box final scores is the product of 
    confidence scores and classification scores.

    $$
    score_{pred} = score_{conf} * score_{class}
    $$

304 305 306 307 308 309 310 311 312
    where the confidence scores follow the formula bellow

    .. math::

        score_{conf} = \begin{case}
                         obj, \text{if } iou_aware == flase \\
                         obj^{1 - iou_aware_factor} * iou^{iou_aware_factor}, \text{otherwise}
                       \end{case}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    Args:
        x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with
                      shape of [N, C, H, W]. The second dimension(C) stores box
                      locations, confidence score and classification one-hot keys
                      of each anchor box. Generally, X should be the output of
                      YOLOv3 network. The data type is float32 or float64. 
        img_size (Tensor): The image size tensor of YoloBox operator, This is a
                           2-D tensor with shape of [N, 2]. This tensor holds
                           height and width of each input image used for resizing
                           output box in input image scale. The data type is int32. 
        anchors (list|tuple): The anchor width and height, it will be parsed pair
                              by pair.
        class_num (int): The number of classes.
        conf_thresh (float): The confidence scores threshold of detection boxes.
                             Boxes with confidence scores under threshold should
                             be ignored.
        downsample_ratio (int): The downsample ratio from network input to
                                :attr:`yolo_box` operator input, so 32, 16, 8
                                should be set for the first, second, and thrid
                                :attr:`yolo_box` layer.
        clip_bbox (bool): Whether clip output bonding box in :attr:`img_size`
334
                          boundary. Default true.
335 336 337 338 339
        scale_x_y (float): Scale the center point of decoded bounding box.
                           Default 1.0
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
340 341
        iou_aware (bool): Whether use iou aware. Default false
        iou_aware_factor (float): iou aware factor. Default 0.5
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

    Returns:
        Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.

    Raises:
        TypeError: Input x of yolov_box must be Tensor
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

361
        x = np.random.random([2, 14, 8, 8]).astype('float32')
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        img_size = np.ones((2, 2)).astype('int32')

        x = paddle.to_tensor(x)
        img_size = paddle.to_tensor(img_size)

        boxes, scores = paddle.vision.ops.yolo_box(x,
                                                   img_size=img_size,
                                                   anchors=[10, 13, 16, 30],
                                                   class_num=2,
                                                   conf_thresh=0.01,
                                                   downsample_ratio=8,
                                                   clip_bbox=True,
                                                   scale_x_y=1.)
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
377
        boxes, scores = _C_ops.yolo_box(
378 379
            x, img_size, 'anchors', anchors, 'class_num', class_num,
            'conf_thresh', conf_thresh, 'downsample_ratio', downsample_ratio,
380 381
            'clip_bbox', clip_bbox, 'scale_x_y', scale_x_y, 'iou_aware',
            iou_aware, 'iou_aware_factor', iou_aware_factor)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        return boxes, scores

    helper = LayerHelper('yolo_box', **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_box')
    check_variable_and_dtype(img_size, 'img_size', 'int32', 'yolo_box')
    check_type(anchors, 'anchors', (list, tuple), 'yolo_box')
    check_type(conf_thresh, 'conf_thresh', float, 'yolo_box')

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
        "conf_thresh": conf_thresh,
        "downsample_ratio": downsample_ratio,
        "clip_bbox": clip_bbox,
        "scale_x_y": scale_x_y,
401 402
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
403 404 405 406 407 408 409 410 411 412 413 414 415 416
    }

    helper.append_op(
        type='yolo_box',
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores
417 418 419 420 421 422 423 424 425


def deform_conv2d(x,
                  offset,
                  weight,
                  bias=None,
                  stride=1,
                  padding=0,
                  dilation=1,
426
                  deformable_groups=1,
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                  groups=1,
                  mask=None,
                  name=None):
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width.
        bias (Tensor, optional): The bias with shape [M,].
482
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
483 484
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
485
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
486 487
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
488
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
489 490
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
491 492
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        groups (int, optonal): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        mask (Tensor, optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        Tensor: The tensor variable storing the deformable convolution \
                  result. A Tensor with type float32, float64.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight, mask=mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    use_deform_conv2d_v1 = True if mask is None else False

    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
552 553
                 'deformable_groups', deformable_groups, 'groups', groups,
                 'im2col_step', 1)
554 555
        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
W
wanghuancoder 已提交
556
            pre_bias = getattr(_C_ops, op_type)(x, offset, weight, *attrs)
557 558
        else:
            op_type = 'deformable_conv'
W
wanghuancoder 已提交
559
            pre_bias = getattr(_C_ops, op_type)(x, offset, mask, weight, *attrs)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
    else:
        check_variable_and_dtype(x, "x", ['float32', 'float64'],
                                 'deform_conv2d')
        check_variable_and_dtype(offset, "offset", ['float32', 'float64'],
                                 'deform_conv2d')

        num_channels = x.shape[1]

        helper = LayerHelper('deformable_conv', **locals())
        dtype = helper.input_dtype()

        stride = utils.convert_to_list(stride, 2, 'stride')
        padding = utils.convert_to_list(padding, 2, 'padding')
        dilation = utils.convert_to_list(dilation, 2, 'dilation')

        pre_bias = helper.create_variable_for_type_inference(dtype)

        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
            }
        else:
            op_type = 'deformable_conv'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
                'Mask': mask,
            }

        outputs = {"Output": pre_bias}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
603
            'deformable_groups': deformable_groups,
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
            'im2col_step': 1,
        }
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)

        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': 1})
        else:
            out = pre_bias
    return out


class DeformConv2D(Layer):
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

S
sunzhongkai588 已提交
663 664
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
665 666 667 668 669 670


    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple): The size of the convolving kernel.
671
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
672 673
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
674
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
675 676
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
677
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
678 679
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
680 681
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
682 683 684 685 686 687 688 689 690
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
S
sunzhongkai588 已提交
691
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
692 693 694 695 696 697 698 699 700 701 702 703 704
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - offset: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`
        - mask: :math:`(N, H_f * W_f, H_{out}, W_{out})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
S
sunzhongkai588 已提交
705
        
706
        Where
S
sunzhongkai588 已提交
707
        
708
        ..  math::
S
sunzhongkai588 已提交
709 710 711 712

            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset, mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
763
                 deformable_groups=1,
764 765 766 767 768 769 770
                 groups=1,
                 weight_attr=None,
                 bias_attr=None):
        super(DeformConv2D, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
771
        self._deformable_groups = deformable_groups
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._channel_dim = 1

        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 2, 'kernel_size')

        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")

        self._padding = utils.convert_to_list(padding, 2, 'padding')

        filter_shape = [out_channels, in_channels // groups] + self._kernel_size

        def _get_default_param_initializer():
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self.weight = self.create_parameter(
            shape=filter_shape,
            attr=self._weight_attr,
            default_initializer=_get_default_param_initializer())
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

    def forward(self, x, offset, mask=None):
        out = deform_conv2d(
            x=x,
            offset=offset,
            weight=self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._padding,
            dilation=self._dilation,
809
            deformable_groups=self._deformable_groups,
810 811 812
            groups=self._groups,
            mask=mask)
        return out
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846


def read_file(filename, name=None):
    """
    Reads and outputs the bytes contents of a file as a uint8 Tensor
    with one dimension.

    Args:
        filename (str): Path of the file to be read.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        A uint8 tensor.

    Examples:
        .. code-block:: python

            import cv2
            import paddle

            fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
            
            print(img_bytes.shape)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
847
        return _C_ops.read_file('filename', filename)
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

    inputs = dict()
    attrs = {'filename': filename}

    helper = LayerHelper("read_file", **locals())
    out = helper.create_variable_for_type_inference('uint8')
    helper.append_op(
        type="read_file", inputs=inputs, attrs=attrs, outputs={"Out": out})

    return out


def decode_jpeg(x, mode='unchanged', name=None):
    """
    Decodes a JPEG image into a 3 dimensional RGB Tensor or 1 dimensional Gray Tensor. 
    Optionally converts the image to the desired format. 
    The values of the output tensor are uint8 between 0 and 255.

    Args:
        x (Tensor): A one dimensional uint8 tensor containing the raw bytes 
            of the JPEG image.
        mode (str): The read mode used for optionally converting the image. 
            Default: 'unchanged'.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A decoded image tensor with shape (imge_channels, image_height, image_width)

    Examples:
        .. code-block:: python
            import cv2
            import paddle

            fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
            img = paddle.vision.ops.decode_jpeg(img_bytes)

            print(img.shape)
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
894
        return _C_ops.decode_jpeg(x, "mode", mode)
895 896 897 898 899 900 901 902 903 904

    inputs = {'X': x}
    attrs = {"mode": mode}

    helper = LayerHelper("decode_jpeg", **locals())
    out = helper.create_variable_for_type_inference('uint8')
    helper.append_op(
        type="decode_jpeg", inputs=inputs, attrs=attrs, outputs={"Out": out})

    return out
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015


def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
    position-sensitive average pooling on regions of interest specified by input. It performs 
    on inputs of nonuniform sizes to obtain fixed-size feature maps.

    PSROIPooling is proposed by R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.

    Args:
        x (Tensor): Input features with shape (N, C, H, W). The data type can be float32 or float64.
        boxes (Tensor): Box coordinates of ROIs (Regions of Interest) to pool over. It should be
                         a 2-D Tensor with shape (num_rois, 4). Given as [[x1, y1, x2, y2], ...], 
                         (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in the batch.
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type 
                               is int32. If int, H and W are both equal to output_size.
        spatial_scale (float): Multiplicative spatial scale factor to translate ROI coords from their 
                               input scale to the scale used when pooling. Default: 1.0
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        4-D Tensor. The pooled ROIs with shape (num_rois, output_channels, pooled_h, pooled_w).
        The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0)
    """

    check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)
    pooled_height, pooled_width = output_size
    assert (len(x.shape) == 4,
            "Input features with shape should be (N, C, H, W)")
    output_channels = int(x.shape[1] / (pooled_height * pooled_width))
    if in_dygraph_mode():
        return core.ops.psroi_pool(x, boxes, boxes_num, "output_channels",
                                   output_channels, "spatial_scale",
                                   spatial_scale, "pooled_height",
                                   pooled_height, "pooled_width", pooled_width)

    helper = LayerHelper('psroi_pool', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': x,
                'ROIs': boxes},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out


class PSRoIPool(Layer):
    """
    This interface is used to construct a callable object of the ``PSRoIPool`` class. Please
    refer to :ref:`api_paddle_vision_ops_psroi_pool`.

    Args:
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type 
                               is int32. If int, H and W are both equal to output_size.
        spatial_scale (float): Multiplicative spatial scale factor to translate ROI coords from their 
                               input scale to the scale used when pooling. Default: 1.0.

    Shape:
        - x: 4-D Tensor with shape (N, C, H, W).
        - boxes: 2-D Tensor with shape (num_rois, 4).
        - boxes_num: 1-D Tensor.
        - output: 4-D tensor with shape (num_rois, output_channels, pooled_h, pooled_w).
              The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle
            
            psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0)
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = psroi_module(x, boxes, boxes_num)

    """

    def __init__(self, output_size, spatial_scale=1.0):
        super(PSRoIPool, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
        return psroi_pool(x, boxes, boxes_num, self.output_size,
                          self.spatial_scale)