parallel_executor.cc 22.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Y
Yu Yang 已提交
16 17
#include "ThreadPool.h"
#include "executor.h"
Y
Yu Yang 已提交
18
#include "lod_tensor.h"
Y
Yu Yang 已提交
19
#include "lod_tensor_array.h"
Y
Yu Yang 已提交
20
#include "op_registry.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/concat.h"
Y
Yang Yang 已提交
22 23

namespace paddle {
Y
Yu Yang 已提交
24 25
namespace framework {

Y
Yu Yang 已提交
26 27 28 29 30 31
#ifdef PADDLE_WITH_CUDA

// FIXME: CHECK the return value of x;
#define NCCL_INVOKE(x) x
#endif

Y
Yu Yang 已提交
32 33
struct OpHandle;

Y
Yu Yang 已提交
34 35 36 37 38
struct VarHandleBase {
  virtual ~VarHandleBase() {}
  virtual std::string DebugString() const = 0;

  OpHandle *generated_op_;
Y
Yu Yang 已提交
39
  std::unordered_set<OpHandle *> pending_ops_;
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48
};

struct VarHandle : public VarHandleBase {
  std::string DebugString() const override {
    std::stringstream ss;
    ss << name_ << ":" << place_;
    return ss.str();
  }

Y
Yu Yang 已提交
49 50
  // version field currently is not used, however, just store the version to
  // debug easily.
Y
Yu Yang 已提交
51 52 53
  size_t version_;
  std::string name_;
  platform::Place place_;
Y
Yu Yang 已提交
54
};
Y
Yu Yang 已提交
55

Y
Yu Yang 已提交
56 57 58 59
struct DummyVarHandle : public VarHandleBase {
  std::string DebugString() const override { return "dummy"; }
};

Y
Yu Yang 已提交
60
struct DependencyVarHandle : public VarHandleBase {
Y
Yu Yang 已提交
61
  std::string DebugString() const override { return "Dependency Variable"; }
Y
Yu Yang 已提交
62 63 64
};

struct OpHandle {
Y
Yu Yang 已提交
65 66 67 68 69
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
  std::unordered_map<platform::Place, platform::DeviceContext *,
                     platform::PlaceHash>
      dev_ctx_;
Y
Yu Yang 已提交
70 71 72 73 74

  std::string DebugString() {
    std::stringstream ss;
    ss << "(";
    for (auto *var : inputs_) {
Y
Yu Yang 已提交
75
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
76 77 78
    }
    ss << ") --> (";
    for (auto *var : outputs_) {
Y
Yu Yang 已提交
79
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
80 81 82 83 84 85
    }
    ss << ")\n";
    return ss.str();
  }

  virtual ~OpHandle() {}
Y
Yu Yang 已提交
86

Y
Yu Yang 已提交
87
  virtual void Run() { PADDLE_THROW("Not implemented"); }
Y
Yu Yang 已提交
88
  virtual void Wait(platform::DeviceContext *waited_dev) {}
Y
Yu Yang 已提交
89 90 91 92
};

struct ComputationOpHandle : public OpHandle {
  std::unique_ptr<OperatorBase> op_;
Y
Yu Yang 已提交
93 94
  Scope *scope_;
  platform::Place place_;
Y
Yu Yang 已提交
95

Y
Yu Yang 已提交
96 97
  explicit ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
                               platform::Place place)
Y
Yu Yang 已提交
98
      : op_(framework::OpRegistry::CreateOp(op_desc)),
Y
Yu Yang 已提交
99
        scope_(scope),
Y
Yu Yang 已提交
100 101 102 103
        place_(place) {}

  void Run() override {
    // Wait other op if necessary
Y
Yu Yang 已提交
104 105 106 107
    if (platform::is_gpu_place(place_)) {
      int dev_id = boost::get<platform::CUDAPlace>(place_).device;
      cudaSetDevice(dev_id);
    }
Y
Yu Yang 已提交
108 109 110
    auto *cur_ctx = dev_ctx_[place_];
    for (auto *in : inputs_) {
      if (in->generated_op_ && in->generated_op_->dev_ctx_[place_] != cur_ctx) {
Y
Yu Yang 已提交
111
        in->generated_op_->Wait(cur_ctx);
Y
Yu Yang 已提交
112 113 114 115 116
      }
    }

    op_->Run(*scope_, place_);
  }
Y
Yu Yang 已提交
117 118 119 120

  void Wait(platform::DeviceContext *waited_dev) override {
    this->dev_ctx_.at(place_)->Wait();
  }
Y
Yu Yang 已提交
121 122
};

Y
Yu Yang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135
struct ScaleLossGradOpHandle : public OpHandle {
  float coeff_;
  Scope *scope_;
  platform::Place place_;

  explicit ScaleLossGradOpHandle(size_t num_dev, Scope *scope,
                                 platform::Place place)
      : coeff_(static_cast<float>(1.0 / num_dev)),
        scope_(scope),
        place_(place) {}

  void Run() override {
    std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_;
Y
Yu Yang 已提交
136

Y
Yu Yang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
    float *tmp = scope_->FindVar(var_name)
                     ->GetMutable<framework::LoDTensor>()
                     ->mutable_data<float>(make_ddim({1}), place_);

    if (platform::is_cpu_place(place_)) {
      *tmp = coeff_;
    } else {
      memory::Copy(
          boost::get<platform::CUDAPlace>(place_), tmp, platform::CPUPlace(),
          &coeff_, sizeof(float),
          static_cast<platform::CUDADeviceContext *>(this->dev_ctx_[place_])
              ->stream());
    }
  }
Y
Yu Yang 已提交
151 152 153 154

  void Wait(platform::DeviceContext *waited_dev) override {
    this->dev_ctx_.at(place_)->Wait();
  }
Y
Yu Yang 已提交
155 156
};

Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
struct FetchedData {
 public:
  std::vector<framework::LoDTensor> tensors_;

  explicit FetchedData(size_t num_fetched) { tensors_.resize(num_fetched); }
};

struct FetchOpHandle : public OpHandle {
  std::shared_ptr<FetchedData> data_;
  size_t offset_;
  std::vector<Scope *> *local_scopes_;
  std::vector<LoDTensor> tensors_;

  ~FetchOpHandle() {
    for (auto *input_var : inputs_) {
      input_var->pending_ops_.erase(this);
    }
    for (auto &pair : dev_ctx_) {
      pair.second->Wait();
    }

    // Lazily merge tensors. Will faster code.
    MergeTensors();
  }

  void Run() override {
Y
Debug  
Yu Yang 已提交
183 184 185 186
    for (auto *input : inputs_) {
      input->generated_op_->Wait(nullptr);
    }

Y
Yu Yang 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    tensors_.resize(inputs_.size());
    auto *var = static_cast<VarHandle *>(inputs_[0]);
    auto &var_name = var->name_;
    platform::CPUPlace cpu;
    auto &scopes = *local_scopes_;

    for (size_t i = 0; i < scopes.size(); ++i) {
      auto &scope = scopes[i];
      auto &t = scope->FindVar(var_name)->Get<framework::LoDTensor>();
      if (platform::is_gpu_place(var->place_)) {
        TensorCopy(t, cpu, *dev_ctx_[t.place()], &tensors_[i]);
      } else {
        tensors_[i].ShareDataWith(t);
        tensors_[i].set_lod(t.lod());
      }
    }
  }

  void Wait(platform::DeviceContext *waited_dev) override {
    PADDLE_THROW("Nobody should wait FetchOp. Unexpceted Error");
  }

 private:
  void MergeTensors() const {
    std::vector<const LoDTensor *> tensors_ptr;
    for (auto &t : tensors_) {
      tensors_ptr.emplace_back(&t);
    }
    data_->tensors_[offset_].MergeLoDTensor(tensors_ptr, platform::CPUPlace());
  }
};

Y
Yu Yang 已提交
219 220
class ParallelExecutorPrivate {
 public:
Y
Yu Yang 已提交
221 222 223
  explicit ParallelExecutorPrivate(size_t num_threads = 12)
      : pool_(num_threads) {}

Y
Stash  
Yu Yang 已提交
224 225
  std::vector<platform::Place> places_;

Y
Yu Yang 已提交
226
  std::vector<Scope *> local_scopes_;
Y
Yu Yang 已提交
227
  Scope *global_scope_;
Y
Yu Yang 已提交
228

Y
Yu Yang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#ifdef PADDLE_WITH_CUDA
  struct NCCLContext {
    std::unique_ptr<platform::CUDADeviceContext> ctx_;
    ncclComm_t comm;

    explicit NCCLContext(int dev_id) {
      ctx_.reset(new platform::CUDADeviceContext(platform::CUDAPlace(dev_id)));
    }

    cudaStream_t stream() const { return ctx_->stream(); }

    int device_id() const {
      return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
    }

Y
Update  
Yu Yang 已提交
244 245
    static void InitNCCLContext(std::unordered_map<int, NCCLContext> &contexts,
                                const std::vector<platform::Place> &places) {
Y
Yu Yang 已提交
246 247 248 249 250
      std::vector<ncclComm_t> comms;
      std::vector<int> devs;
      comms.resize(contexts.size());
      devs.reserve(contexts.size());

Y
Update  
Yu Yang 已提交
251 252
      for (auto &p : places) {
        devs.push_back(boost::get<platform::CUDAPlace>(p).device);
Y
Yu Yang 已提交
253 254 255 256 257 258
      }

      NCCL_INVOKE(platform::dynload::ncclCommInitAll(
          &comms[0], static_cast<int>(contexts.size()), &devs[0]));

      int i = 0;
Y
Update  
Yu Yang 已提交
259 260
      for (auto &dev_id : devs) {
        contexts.at(dev_id).comm = comms[i++];
Y
Yu Yang 已提交
261 262 263 264
      }
    }
  };

Y
Update  
Yu Yang 已提交
265
  std::unordered_map<int, NCCLContext> communication_streams_;
Y
Yu Yang 已提交
266 267 268 269 270 271 272 273

  NCCLContext &GetNCCLCtx(platform::Place p) {
    int dev_id = boost::get<platform::CUDAPlace>(p).device;
    return communication_streams_.at(dev_id);
  }

#endif

Y
Yu Yang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286
  platform::DeviceContext *CommunicationDevCtx(const platform::Place &place) {
    if (platform::is_cpu_place(place) || local_scopes_.size() == 1) {
      return const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
    } else {
#ifdef PADDLE_WITH_CUDA
      return GetNCCLCtx(place).ctx_.get();
#else
      PADDLE_THROW("Not compiled with CUDA")
#endif
    }
  }

Y
Yu Yang 已提交
287 288 289 290 291 292
  platform::Place main_place_;

  std::unordered_map<platform::Place,
                     std::unordered_map<std::string, std::map<int, VarHandle>>,
                     platform::PlaceHash>
      vars_;
Y
Yu Yang 已提交
293 294
  std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;

Y
Yu Yang 已提交
295
  std::vector<std::unique_ptr<OpHandle>> ops_;
Y
Yu Yang 已提交
296

Y
Yu Yang 已提交
297
  // Use a simpler thread pool, might be faster.
Y
Yu Yang 已提交
298
  ThreadPool pool_;
Y
Yu Yang 已提交
299 300

  std::unique_ptr<platform::EnforceNotMet> exception_;
Y
Yu Yang 已提交
301 302 303 304
};

// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
Y
Stash  
Yu Yang 已提交
305 306 307 308 309 310 311 312 313
  if (type == typeid(float)) {  // NOLINT
    return ncclFloat;
  } else if (type == typeid(double)) {  // NOLINT
    return ncclDouble;
  } else if (type == typeid(int)) {  // NOLINT
    return ncclInt;
  } else {
    PADDLE_THROW("Not supported");
  }
Y
Yu Yang 已提交
314 315
}

Y
Yu Yang 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
struct NCCLAllReduceOpHandle : public OpHandle {
  ParallelExecutorPrivate *member_;

  explicit NCCLAllReduceOpHandle(ParallelExecutorPrivate *member)
      : member_(member) {}

  void Run() override {
    if (this->inputs_.size() == 1) {
      return;  // No need to all reduce when GPU count = 1;
    } else {
      auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;

      int dtype = -1;
      size_t numel = 0;

Y
Update  
Yu Yang 已提交
331 332
      platform::dynload::ncclGroupStart();

Y
Yu Yang 已提交
333 334 335
      for (size_t i = 0; i < member_->local_scopes_.size(); ++i) {
        auto &p = member_->places_[i];
        auto *s = member_->local_scopes_[i];
Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349
        int dev_id = boost::get<platform::CUDAPlace>(p).device;

        auto &lod_tensor = s->FindVar(var_name)->Get<framework::LoDTensor>();
        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        if (dtype == -1) {
          dtype = ToNCCLDataType(lod_tensor.type());
        }

        if (numel == 0) {
          numel = static_cast<size_t>(lod_tensor.numel());
        }

        auto &nccl_ctx = member_->communication_streams_.at(dev_id);

Y
Update  
Yu Yang 已提交
350 351 352
        platform::dynload::ncclAllReduce(
            buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
            nccl_ctx.comm, nccl_ctx.stream());
Y
Yu Yang 已提交
353 354
      }

Y
Update  
Yu Yang 已提交
355
      platform::dynload::ncclGroupEnd();
Y
Yu Yang 已提交
356 357
    }
  }
Y
Yu Yang 已提交
358 359

  void Wait(platform::DeviceContext *waited_dev) override {
Y
Debug  
Yu Yang 已提交
360 361 362
    for (auto &pair : member_->communication_streams_) {
      pair.second.ctx_->Wait();
    }
Y
Yu Yang 已提交
363
  }
Y
Yu Yang 已提交
364 365
};

Y
Yu Yang 已提交
366 367 368 369 370 371
ParallelExecutor::ParallelExecutor(
    const std::vector<platform::Place> &places,
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
    : member_(new ParallelExecutorPrivate()) {
Y
Stash  
Yu Yang 已提交
372
  member_->places_ = places;
Y
Yu Yang 已提交
373
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
374 375 376 377
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
Y
Yu Yang 已提交
378 379
  for (size_t i = 0; i < member_->places_.size(); ++i) {
    member_->local_scopes_.push_back(&scope->NewScope());
Y
Yu Yang 已提交
380 381 382 383
  }
  member_->main_place_ = places[0];

  // Bcast Parameters to all GPUs
Y
Yu Yang 已提交
384
  BuildNCCLCommunicator();
Y
Yu Yang 已提交
385 386 387
  if (platform::is_gpu_place(member_->main_place_) &&
      member_->local_scopes_.size() != 1) {  // Is CUDA
    BCastParamsToGPUs(startup_program);
Y
Yu Yang 已提交
388 389 390 391 392 393
  }
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  ConstructDependencyGraph(params, main_program, loss_var_name);
Y
Yu Yang 已提交
394 395

  // Step 3. Create vars in each scope;
Y
Yu Yang 已提交
396
  for (auto *scope : member_->local_scopes_) {
Y
Yu Yang 已提交
397 398 399 400 401 402 403 404
    for (auto *var : main_program.Block(0).AllVars()) {
      if (scope->FindVar(var->Name()) != nullptr) {
        continue;
      }

      InitializeVariable(scope->Var(var->Name()), var->GetType());
    }
  }
Y
Yu Yang 已提交
405 406 407 408 409
}

void ParallelExecutor::ConstructDependencyGraph(
    const std::unordered_set<std::string> &params,
    const ProgramDesc &main_program, const std::string &loss_var_name) const {
Y
Yu Yang 已提交
410
  std::unordered_set<std::string> grads;
Y
Yu Yang 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  for (auto &each_param : params) {
    grads.insert(each_param + "@GRAD");
  }

  bool is_forwarding = true;
  for (auto *op : main_program.Block(0).AllOps()) {
    bool change_forward = false;

    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

Y
Yu Yang 已提交
427 428 429 430 431
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      auto &p = member_->places_[i];
      auto *s = member_->local_scopes_[i];

      member_->ops_.emplace_back(new ComputationOpHandle(*op, s, p));
Y
Yu Yang 已提交
432
      auto *op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
433 434
      op_handle->dev_ctx_[p] = const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(p));
Y
Yu Yang 已提交
435 436 437 438

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
Y
Yu Yang 已提交
439
        VarHandle *var = GetVarHandle(each_var_name, p);
Y
Yu Yang 已提交
440
        op_handle->inputs_.emplace_back(var);
Y
Yu Yang 已提交
441
        var->pending_ops_.emplace(op_handle);
Y
Yu Yang 已提交
442 443 444 445
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
Y
Yu Yang 已提交
446
        GenerateVar(op_handle, each_var_name, p);
Y
Yu Yang 已提交
447 448 449 450 451
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name) {
          // Insert ScaleCost OpHandle
Y
Yu Yang 已提交
452
          member_->ops_.emplace_back(new ScaleLossGradOpHandle(
Y
Yu Yang 已提交
453
              this->member_->local_scopes_.size(), s, p));
Y
Yu Yang 已提交
454
          op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
455

Y
Yu Yang 已提交
456
          op_handle->dev_ctx_[p] = member_->CommunicationDevCtx(p);
Y
Yu Yang 已提交
457

Y
Yu Yang 已提交
458 459 460 461 462 463
          // FIXME: Currently ScaleLossGradOp only use device_count as scale
          // factor. So it does not depend on any other operators.
          // VarHandle *loss = GetVarHandle(loss_var_name, place);
          // loss->pending_ops_.emplace_back(op_handle);
          // op_handle->inputs_.emplace_back(loss);

Y
Yu Yang 已提交
464
          GenerateVar(op_handle, loss_var_name + "@GRAD", p);
Y
Yu Yang 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478
          change_forward = true;
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grads.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
Y
Yu Yang 已提交
479
          member_->ops_.emplace_back(new NCCLAllReduceOpHandle(member_));
Y
Yu Yang 已提交
480 481
          auto *op_handle = member_->ops_.back().get();

Y
Yu Yang 已提交
482 483 484
          for (size_t i = 0; i < member_->places_.size(); ++i) {
            auto &p = member_->places_[i];
            auto &vars = member_->vars_[p][og];
Y
Yu Yang 已提交
485 486 487 488 489 490

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->inputs_.emplace_back(prev_grad);
Y
Yu Yang 已提交
491
            prev_grad->pending_ops_.emplace(op_handle);
Y
Yu Yang 已提交
492
            auto &var = vars[vars.size()];
Y
Yu Yang 已提交
493
            var.place_ = p;
Y
Yu Yang 已提交
494 495 496 497
            var.generated_op_ = op_handle;
            var.name_ = og;
            var.version_ = vars.size() - 1;
            op_handle->outputs_.emplace_back(&var);
Y
Yu Yang 已提交
498

Y
Yu Yang 已提交
499
            op_handle->dev_ctx_[p] = member_->CommunicationDevCtx(p);
Y
Yu Yang 已提交
500 501 502 503 504
          }
        }
      }
    }
  }
Y
Yu Yang 已提交
505

Y
Yu Yang 已提交
506 507 508
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
Y
Yu Yang 已提交
509
   */
Y
Yu Yang 已提交
510 511
  PolishGraphToSupportDataHarzaeds();
}
Y
Yu Yang 已提交
512

Y
Yu Yang 已提交
513 514 515 516 517 518 519 520
/**
 * We only handle write after read(WAR), since it should not have a write
 * after write in program. If there are write after write operators, we need
 * prune them.
 *
 * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
 */
void ParallelExecutor::PolishGraphToSupportDataHarzaeds() const {
Y
Yu Yang 已提交
521 522 523 524 525 526 527 528 529 530 531
  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      if (name_pair.second.size() <= 1) {
        return;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        auto *write_op = it_new->second.generated_op_;
        auto &read_ops = it_old->second.pending_ops_;
Y
Yu Yang 已提交
532 533 534 535 536 537
        auto *ex_write_op = it_old->second.generated_op_;

        if (ex_write_op == nullptr) {  // Nobody write this var.
          continue;
        }

Y
Yu Yang 已提交
538 539
        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
Y
Yu Yang 已提交
540 541 542 543
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
Y
Yu Yang 已提交
544 545

          auto *dep_var = new DependencyVarHandle();
Y
Yu Yang 已提交
546

Y
Yu Yang 已提交
547 548 549
          dep_var->generated_op_ = read_op;
          read_op->outputs_.emplace_back(dep_var);

Y
Yu Yang 已提交
550
          dep_var->pending_ops_.emplace(write_op);
Y
Yu Yang 已提交
551 552 553 554 555 556
          write_op->inputs_.emplace_back(dep_var);
          member_->dep_vars_.emplace(dep_var);
        }
      }
    }
  }
Y
Yu Yang 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
}

void ParallelExecutor::GenerateVar(OpHandle *op_handle,
                                   const std::string &each_var_name,
                                   const platform::Place &place) const {
  auto &vars = member_->vars_[place][each_var_name];
  size_t version = vars.size();
  auto &var = vars[version];
  var.version_ = version;
  var.generated_op_ = op_handle;
  var.name_ = each_var_name;
  var.place_ = place;
  op_handle->outputs_.emplace_back(&var);
}

VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
                                          const platform::Place &place) const {
  auto &var_holders = member_->vars_[place];
  auto &var_holder = var_holders[each_var_name];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    auto &init_var = var_holder[0];
    init_var.place_ = place;
    init_var.name_ = each_var_name;
    init_var.generated_op_ = nullptr;
    init_var.version_ = 0;
    var = &init_var;
  } else {
    var = &var_holder.rbegin()->second;
  }
  return var;
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
Y
Yu Yang 已提交
592
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
593
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
594

Y
Yu Yang 已提交
595 596 597 598 599 600 601 602
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
      ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
      auto &dims = main_tensor.dims();
      size_t numel = main_tensor.numel();

Y
Stash  
Yu Yang 已提交
603
      platform::dynload::ncclGroupStart();
Y
Yu Yang 已提交
604

Y
Update  
Yu Yang 已提交
605 606 607 608 609 610
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
611
          auto local_scope = member_->local_scopes_[i];
Y
Update  
Yu Yang 已提交
612 613 614 615 616
          auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }

Y
Stash  
Yu Yang 已提交
617
        auto &nccl_ctx = member_->GetNCCLCtx(place);
Y
Update  
Yu Yang 已提交
618
        platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm,
Y
Stash  
Yu Yang 已提交
619
                                     nccl_ctx.stream());
Y
Yu Yang 已提交
620
      }
Y
Stash  
Yu Yang 已提交
621 622 623
      platform::dynload::ncclGroupEnd();
    }
  }
Y
Yu Yang 已提交
624 625 626 627
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
628

Y
Yu Yang 已提交
629 630
void ParallelExecutor::BuildNCCLCommunicator() const {
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
631
  for (auto &place : member_->places_) {
Y
Yu Yang 已提交
632
    int dev_id = boost::get<platform::CUDAPlace>(place).device;
Y
Yu Yang 已提交
633

Y
Yu Yang 已提交
634 635
    member_->communication_streams_.emplace(
        dev_id, ParallelExecutorPrivate::NCCLContext(dev_id));
Y
Yu Yang 已提交
636
  }
Y
Yu Yang 已提交
637 638

  ParallelExecutorPrivate::NCCLContext::InitNCCLContext(
Y
Update  
Yu Yang 已提交
639
      member_->communication_streams_, member_->places_);
Y
Yu Yang 已提交
640
#endif
Y
Yu Yang 已提交
641 642
}

Y
Yu Yang 已提交
643 644 645
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
  auto fetched_data = std::make_shared<FetchedData>(fetch_tensors.size());
Y
Yu Yang 已提交
646
  // Version --> VarHandle
Y
Yu Yang 已提交
647
  member_->exception_.reset();
Y
Yu Yang 已提交
648
  std::unordered_map<VarHandleBase *, std::atomic<bool>> pending_vars;
Y
Yu Yang 已提交
649
  std::unordered_map<OpHandle *, size_t> pending_ops;
Y
Yu Yang 已提交
650
  std::vector<DummyVarHandle> dummy_vars;
Y
Yu Yang 已提交
651 652 653 654

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      for (auto &version_pair : name_pair.second) {
Y
Yu Yang 已提交
655 656
        pending_vars[&version_pair.second] =
            version_pair.second.generated_op_ == nullptr;
Y
Yu Yang 已提交
657 658 659 660
      }
    }
  }

Y
Yu Yang 已提交
661
  for (auto &var : member_->dep_vars_) {
Y
Yu Yang 已提交
662
    pending_vars[var.get()] = var->generated_op_ == nullptr;
Y
Yu Yang 已提交
663 664
  }

Y
Yu Yang 已提交
665 666
  std::vector<OpHandle *> to_run;

Y
Yu Yang 已提交
667
  for (auto &op : member_->ops_) {
Y
Yu Yang 已提交
668 669 670 671 672 673 674
    if (op->inputs_.empty()) {  // Special case, Op has no input.
      to_run.emplace_back(op.get());
    } else {
      pending_ops.insert({op.get(), op->inputs_.size()});
    }
  }

Y
Yu Yang 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
  std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;

  for (auto &fetch_var_name : fetch_tensors) {
    for (auto &pair : member_->vars_) {
      auto it = pair.second.find(fetch_var_name);
      if (it != pair.second.end()) {
        fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second);
      }
    }
  }

  std::vector<FetchOpHandle> fetch_ops;

  for (size_t i = 0; i < fetch_tensors.size(); ++i) {
    auto &var_name = fetch_tensors[i];
    auto &vars = fetched_vars[var_name];
    fetch_ops.emplace_back();
    FetchOpHandle *op = &fetch_ops.back();
    op->data_ = fetched_data;
    op->offset_ = i;
    op->local_scopes_ = &member_->local_scopes_;
    for (auto &p : member_->places_) {
Y
Yu Yang 已提交
697
      op->dev_ctx_[p] = member_->GetNCCLCtx(p).ctx_.get();
Y
Yu Yang 已提交
698 699 700 701 702 703
    }

    for (auto *var : vars) {
      var->pending_ops_.emplace(op);
      op->inputs_.emplace_back(var);
    }
Y
Yu Yang 已提交
704 705 706 707 708 709 710

    dummy_vars.emplace_back();
    auto *var = &dummy_vars.back();
    op->outputs_.emplace_back(var);
    var->generated_op_ = op;
    pending_vars[var] = false;

Y
Yu Yang 已提交
711 712 713
    pending_ops.insert({op, op->inputs_.size()});
  }

Y
Yu Yang 已提交
714
  for (auto *op : to_run) {
Y
Yu Yang 已提交
715
    RunOp(pending_vars, op);
Y
Yu Yang 已提交
716 717
  }

Y
Yu Yang 已提交
718
  while (!pending_vars.empty()) {
Y
Yu Yang 已提交
719
    VarHandleBase *ready_var = nullptr;
Y
Yu Yang 已提交
720
    for (auto &pair : pending_vars) {
Y
Yu Yang 已提交
721
      if (pair.second.load(std::memory_order_consume)) {
Y
Yu Yang 已提交
722
        ready_var = pair.first;
Y
Yu Yang 已提交
723 724
      }
    }
Y
Yu Yang 已提交
725
    if (ready_var == nullptr) {
Y
Yu Yang 已提交
726 727 728 729
      // FIXME use conditional var instead of busy wait.
      if (member_->exception_) {
        throw * member_->exception_;
      }
Y
Yu Yang 已提交
730
      continue;
Y
Yu Yang 已提交
731
    }
Y
Yu Yang 已提交
732
    pending_vars.erase(ready_var);
Y
Yu Yang 已提交
733
    to_run.clear();
Y
Yu Yang 已提交
734 735 736 737 738
    for (auto *op : ready_var->pending_ops_) {
      auto &deps = pending_ops[op];
      --deps;
      if (deps == 0) {
        to_run.emplace_back(op);
Y
Yu Yang 已提交
739 740 741 742
      }
    }
    for (auto *op : to_run) {
      pending_ops.erase(op);
Y
Yu Yang 已提交
743
      RunOp(pending_vars, op);
Y
Yu Yang 已提交
744 745
    }
  }
Y
Yu Yang 已提交
746

Y
Yu Yang 已提交
747 748 749
  fetch_ops.clear();
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<LoDTensorArray>() =
      fetched_data->tensors_;
Y
Yu Yang 已提交
750
}
Y
Yu Yang 已提交
751

Y
Yu Yang 已提交
752
void ParallelExecutor::RunOp(
Y
Yu Yang 已提交
753
    std::unordered_map<VarHandleBase *, std::atomic<bool>> &pending_vars,
Y
Yu Yang 已提交
754
    OpHandle *op) const {
Y
Yu Yang 已提交
755 756
  std::vector<std::atomic<bool> *> *ready_buffer =
      new std::vector<std::atomic<bool> *>();
Y
Yu Yang 已提交
757
  for (auto *var : op->outputs_) {
Y
Debug  
Yu Yang 已提交
758
    ready_buffer->emplace_back(&pending_vars[var]);
Y
Yu Yang 已提交
759 760 761 762 763
  }

  auto op_run = [ready_buffer, op, this] {
    try {
      op->Run();
Y
Debug  
Yu Yang 已提交
764
      for (auto *ready : *ready_buffer) {
Y
Yu Yang 已提交
765
        ready->store(true, std::memory_order_release);
Y
Yu Yang 已提交
766
      }
Y
Debug  
Yu Yang 已提交
767
      delete ready_buffer;
Y
Yu Yang 已提交
768 769 770 771 772 773
    } catch (platform::EnforceNotMet ex) {
      member_->exception_.reset(new platform::EnforceNotMet(ex));
    } catch (...) {
      LOG(FATAL) << "Unknown exception catched";
    }
  };
Y
Yu Yang 已提交
774
  member_->pool_.enqueue(op_run);
Y
Yu Yang 已提交
775
}
Y
Yu Yang 已提交
776
}  // namespace framework
Y
Yang Yang 已提交
777
}  // namespace paddle