parallel_executor.cc 20.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Y
Yu Yang 已提交
16 17
#include "ThreadPool.h"
#include "executor.h"
Y
Yu Yang 已提交
18 19
#include "lod_tensor.h"
#include "op_registry.h"
Y
Yang Yang 已提交
20 21

namespace paddle {
Y
Yu Yang 已提交
22 23
namespace framework {

Y
Yu Yang 已提交
24 25 26 27 28 29
#ifdef PADDLE_WITH_CUDA

// FIXME: CHECK the return value of x;
#define NCCL_INVOKE(x) x
#endif

Y
Yu Yang 已提交
30 31
struct OpHandle;

Y
Yu Yang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
struct VarHandleBase {
  virtual ~VarHandleBase() {}
  virtual std::string DebugString() const = 0;

  OpHandle *generated_op_;
  std::vector<OpHandle *> pending_ops_;
};

struct VarHandle : public VarHandleBase {
  std::string DebugString() const override {
    std::stringstream ss;
    ss << name_ << ":" << place_;
    return ss.str();
  }

Y
Yu Yang 已提交
47 48 49
  size_t version_;
  std::string name_;
  platform::Place place_;
Y
Yu Yang 已提交
50
};
Y
Yu Yang 已提交
51

Y
Yu Yang 已提交
52
struct DependencyVarHandle : public VarHandleBase {
Y
Yu Yang 已提交
53
  std::string DebugString() const override { return "Dependency Variable"; }
Y
Yu Yang 已提交
54 55 56
};

struct OpHandle {
Y
Yu Yang 已提交
57 58 59 60 61
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
  std::unordered_map<platform::Place, platform::DeviceContext *,
                     platform::PlaceHash>
      dev_ctx_;
Y
Yu Yang 已提交
62 63 64 65 66

  std::string DebugString() {
    std::stringstream ss;
    ss << "(";
    for (auto *var : inputs_) {
Y
Yu Yang 已提交
67
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
68 69 70
    }
    ss << ") --> (";
    for (auto *var : outputs_) {
Y
Yu Yang 已提交
71
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
72 73 74 75 76 77
    }
    ss << ")\n";
    return ss.str();
  }

  virtual ~OpHandle() {}
Y
Yu Yang 已提交
78

Y
Yu Yang 已提交
79
  virtual void Run() { PADDLE_THROW("Not implemented"); }
Y
Yu Yang 已提交
80
  virtual void Wait() {}
Y
Yu Yang 已提交
81 82 83 84
};

struct ComputationOpHandle : public OpHandle {
  std::unique_ptr<OperatorBase> op_;
Y
Yu Yang 已提交
85 86
  Scope *scope_;
  platform::Place place_;
Y
Yu Yang 已提交
87

Y
Yu Yang 已提交
88 89
  explicit ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
                               platform::Place place)
Y
Yu Yang 已提交
90
      : op_(framework::OpRegistry::CreateOp(op_desc)),
Y
Yu Yang 已提交
91
        scope_(scope),
Y
Yu Yang 已提交
92 93 94 95
        place_(place) {}

  void Run() override {
    // Wait other op if necessary
Y
Yu Yang 已提交
96
    LOG(INFO) << "Run " << this << " " << DebugString();
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104
    auto *cur_ctx = dev_ctx_[place_];
    for (auto *in : inputs_) {
      if (in->generated_op_ && in->generated_op_->dev_ctx_[place_] != cur_ctx) {
        in->generated_op_->Wait();
      }
    }

    op_->Run(*scope_, place_);
Y
Yu Yang 已提交
105
    LOG(INFO) << "Done " << this;
Y
Yu Yang 已提交
106
  }
Y
Yu Yang 已提交
107 108
};

Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
struct ScaleLossGradOpHandle : public OpHandle {
  float coeff_;
  Scope *scope_;
  platform::Place place_;

  explicit ScaleLossGradOpHandle(size_t num_dev, Scope *scope,
                                 platform::Place place)
      : coeff_(static_cast<float>(1.0 / num_dev)),
        scope_(scope),
        place_(place) {}

  void Run() override {
    LOG(INFO) << "Run Scale Loss Grad";

    std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_;
Y
Yu Yang 已提交
124

Y
Yu Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    float *tmp = scope_->FindVar(var_name)
                     ->GetMutable<framework::LoDTensor>()
                     ->mutable_data<float>(make_ddim({1}), place_);

    if (platform::is_cpu_place(place_)) {
      *tmp = coeff_;
    } else {
      memory::Copy(
          boost::get<platform::CUDAPlace>(place_), tmp, platform::CPUPlace(),
          &coeff_, sizeof(float),
          static_cast<platform::CUDADeviceContext *>(this->dev_ctx_[place_])
              ->stream());
    }
  }
};

Y
Yu Yang 已提交
141 142
class ParallelExecutorPrivate {
 public:
Y
Yu Yang 已提交
143 144 145
  explicit ParallelExecutorPrivate(size_t num_threads = 12)
      : pool_(num_threads) {}

Y
Yu Yang 已提交
146 147
  std::unordered_map<platform::Place, Scope *, platform::PlaceHash>
      local_scopes_;
Y
Yu Yang 已提交
148

Y
Stash  
Yu Yang 已提交
149 150
  std::vector<platform::Place> places_;

Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#ifdef PADDLE_WITH_CUDA
  struct NCCLContext {
    std::unique_ptr<platform::CUDADeviceContext> ctx_;
    ncclComm_t comm;

    explicit NCCLContext(int dev_id) {
      ctx_.reset(new platform::CUDADeviceContext(platform::CUDAPlace(dev_id)));
    }

    cudaStream_t stream() const { return ctx_->stream(); }

    int device_id() const {
      return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
    }

Y
Update  
Yu Yang 已提交
166 167
    static void InitNCCLContext(std::unordered_map<int, NCCLContext> &contexts,
                                const std::vector<platform::Place> &places) {
Y
Yu Yang 已提交
168 169 170 171 172
      std::vector<ncclComm_t> comms;
      std::vector<int> devs;
      comms.resize(contexts.size());
      devs.reserve(contexts.size());

Y
Update  
Yu Yang 已提交
173 174
      for (auto &p : places) {
        devs.push_back(boost::get<platform::CUDAPlace>(p).device);
Y
Yu Yang 已提交
175 176 177 178 179 180
      }

      NCCL_INVOKE(platform::dynload::ncclCommInitAll(
          &comms[0], static_cast<int>(contexts.size()), &devs[0]));

      int i = 0;
Y
Update  
Yu Yang 已提交
181 182
      for (auto &dev_id : devs) {
        contexts.at(dev_id).comm = comms[i++];
Y
Yu Yang 已提交
183 184 185 186
      }
    }
  };

Y
Update  
Yu Yang 已提交
187
  std::unordered_map<int, NCCLContext> communication_streams_;
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195

  NCCLContext &GetNCCLCtx(platform::Place p) {
    int dev_id = boost::get<platform::CUDAPlace>(p).device;
    return communication_streams_.at(dev_id);
  }

#endif

Y
Yu Yang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208
  platform::DeviceContext *CommunicationDevCtx(const platform::Place &place) {
    if (platform::is_cpu_place(place) || local_scopes_.size() == 1) {
      return const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
    } else {
#ifdef PADDLE_WITH_CUDA
      return GetNCCLCtx(place).ctx_.get();
#else
      PADDLE_THROW("Not compiled with CUDA")
#endif
    }
  }

Y
Yu Yang 已提交
209 210 211 212 213 214
  platform::Place main_place_;

  std::unordered_map<platform::Place,
                     std::unordered_map<std::string, std::map<int, VarHandle>>,
                     platform::PlaceHash>
      vars_;
Y
Yu Yang 已提交
215 216
  std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;

Y
Yu Yang 已提交
217
  std::vector<std::unique_ptr<OpHandle>> ops_;
Y
Yu Yang 已提交
218

Y
Yu Yang 已提交
219
  // Use a simpler thread pool, might be faster.
Y
Yu Yang 已提交
220
  ThreadPool pool_;
Y
Yu Yang 已提交
221 222

  std::unique_ptr<platform::EnforceNotMet> exception_;
Y
Yu Yang 已提交
223 224 225 226
};

// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
Y
Stash  
Yu Yang 已提交
227 228 229 230 231 232 233 234 235
  if (type == typeid(float)) {  // NOLINT
    return ncclFloat;
  } else if (type == typeid(double)) {  // NOLINT
    return ncclDouble;
  } else if (type == typeid(int)) {  // NOLINT
    return ncclInt;
  } else {
    PADDLE_THROW("Not supported");
  }
Y
Yu Yang 已提交
236 237
}

Y
Yu Yang 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
struct NCCLAllReduceOpHandle : public OpHandle {
  ParallelExecutorPrivate *member_;

  explicit NCCLAllReduceOpHandle(ParallelExecutorPrivate *member)
      : member_(member) {}

  void Run() override {
    if (this->inputs_.size() == 1) {
      return;  // No need to all reduce when GPU count = 1;
    } else {
      auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;

      int dtype = -1;
      size_t numel = 0;

Y
Update  
Yu Yang 已提交
253 254
      platform::dynload::ncclGroupStart();

Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
      for (auto &p : member_->places_) {
        int dev_id = boost::get<platform::CUDAPlace>(p).device;

        Scope *s = member_->local_scopes_[p];
        auto &lod_tensor = s->FindVar(var_name)->Get<framework::LoDTensor>();
        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        if (dtype == -1) {
          dtype = ToNCCLDataType(lod_tensor.type());
        }

        if (numel == 0) {
          numel = static_cast<size_t>(lod_tensor.numel());
        }

        auto &nccl_ctx = member_->communication_streams_.at(dev_id);

Y
Update  
Yu Yang 已提交
271 272 273
        platform::dynload::ncclAllReduce(
            buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
            nccl_ctx.comm, nccl_ctx.stream());
Y
Yu Yang 已提交
274 275
      }

Y
Update  
Yu Yang 已提交
276
      platform::dynload::ncclGroupEnd();
Y
Yu Yang 已提交
277 278 279 280
    }
  }
};

Y
Yu Yang 已提交
281 282 283 284 285 286
ParallelExecutor::ParallelExecutor(
    const std::vector<platform::Place> &places,
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
    : member_(new ParallelExecutorPrivate()) {
Y
Stash  
Yu Yang 已提交
287 288
  member_->places_ = places;

Y
Yu Yang 已提交
289 290 291 292 293 294 295 296 297 298
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
  for (auto &place : places) {
    member_->local_scopes_[place] = &scope->NewScope();
  }
  member_->main_place_ = places[0];

  // Bcast Parameters to all GPUs
Y
Yu Yang 已提交
299 300 301 302
  if (platform::is_gpu_place(member_->main_place_) &&
      member_->local_scopes_.size() != 1) {  // Is CUDA
    BuildNCCLCommunicator();
    BCastParamsToGPUs(startup_program);
Y
Yu Yang 已提交
303 304 305 306 307 308
  }
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  ConstructDependencyGraph(params, main_program, loss_var_name);
Y
Yu Yang 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321

  // Step 3. Create vars in each scope;
  for (auto &pair : member_->local_scopes_) {
    auto *scope = pair.second;

    for (auto *var : main_program.Block(0).AllVars()) {
      if (scope->FindVar(var->Name()) != nullptr) {
        continue;
      }

      InitializeVariable(scope->Var(var->Name()), var->GetType());
    }
  }
Y
Yu Yang 已提交
322 323 324 325 326
}

void ParallelExecutor::ConstructDependencyGraph(
    const std::unordered_set<std::string> &params,
    const ProgramDesc &main_program, const std::string &loss_var_name) const {
Y
Yu Yang 已提交
327
  std::unordered_set<std::string> grads;
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  for (auto &each_param : params) {
    grads.insert(each_param + "@GRAD");
  }

  bool is_forwarding = true;
  for (auto *op : main_program.Block(0).AllOps()) {
    bool change_forward = false;

    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (auto &pair : member_->local_scopes_) {
Y
Yu Yang 已提交
345 346
      member_->ops_.emplace_back(
          new ComputationOpHandle(*op, pair.second, pair.first));
Y
Yu Yang 已提交
347
      auto *op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
348 349
      op_handle->dev_ctx_[pair.first] = const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(pair.first));
Y
Yu Yang 已提交
350 351 352 353 354 355 356

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        VarHandle *var = GetVarHandle(each_var_name, place);
        op_handle->inputs_.emplace_back(var);
Y
Yu Yang 已提交
357
        var->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
358 359 360 361 362 363 364 365 366 367 368
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        GenerateVar(op_handle, each_var_name, place);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name) {
          // Insert ScaleCost OpHandle
Y
Yu Yang 已提交
369 370
          member_->ops_.emplace_back(new ScaleLossGradOpHandle(
              this->member_->local_scopes_.size(), pair.second, pair.first));
Y
Yu Yang 已提交
371
          op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
372 373 374 375

          op_handle->dev_ctx_[pair.first] =
              member_->CommunicationDevCtx(pair.first);

Y
Yu Yang 已提交
376
          auto &place = pair.first;
Y
Yu Yang 已提交
377 378 379 380 381 382
          // FIXME: Currently ScaleLossGradOp only use device_count as scale
          // factor. So it does not depend on any other operators.
          // VarHandle *loss = GetVarHandle(loss_var_name, place);
          // loss->pending_ops_.emplace_back(op_handle);
          // op_handle->inputs_.emplace_back(loss);

Y
Yu Yang 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
          GenerateVar(op_handle, loss_var_name + "@GRAD", place);
          change_forward = true;
          LOG(INFO) << "Scale Loss " << op_handle->DebugString();
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grads.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
Y
Yu Yang 已提交
399
          member_->ops_.emplace_back(new NCCLAllReduceOpHandle(member_));
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407 408 409 410
          auto *op_handle = member_->ops_.back().get();

          for (auto &pair : member_->local_scopes_) {
            auto &place = pair.first;
            auto &vars = member_->vars_[place][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->inputs_.emplace_back(prev_grad);
Y
Yu Yang 已提交
411
            prev_grad->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
412 413 414 415 416 417
            auto &var = vars[vars.size()];
            var.place_ = place;
            var.generated_op_ = op_handle;
            var.name_ = og;
            var.version_ = vars.size() - 1;
            op_handle->outputs_.emplace_back(&var);
Y
Yu Yang 已提交
418 419 420 421 422

            for (auto &pair : member_->local_scopes_) {
              op_handle->dev_ctx_[pair.first] =
                  member_->CommunicationDevCtx(pair.first);
            }
Y
Yu Yang 已提交
423 424 425 426 427
          }
        }
      }
    }
  }
Y
Yu Yang 已提交
428

Y
Yu Yang 已提交
429 430 431
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
Y
Yu Yang 已提交
432
   */
Y
Yu Yang 已提交
433 434
  PolishGraphToSupportDataHarzaeds();
}
Y
Yu Yang 已提交
435

Y
Yu Yang 已提交
436 437 438 439 440 441 442 443
/**
 * We only handle write after read(WAR), since it should not have a write
 * after write in program. If there are write after write operators, we need
 * prune them.
 *
 * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
 */
void ParallelExecutor::PolishGraphToSupportDataHarzaeds() const {
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452 453 454
  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      if (name_pair.second.size() <= 1) {
        return;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        auto *write_op = it_new->second.generated_op_;
        auto &read_ops = it_old->second.pending_ops_;
Y
Yu Yang 已提交
455 456 457 458 459 460 461 462 463
        auto *ex_write_op = it_old->second.generated_op_;

        if (ex_write_op == nullptr) {  // Nobody write this var.
          continue;
        }

        LOG(INFO) << "Link " << it_new->second.DebugString() << " From "
                  << it_old->second.version_ << " To "
                  << it_new->second.version_;
Y
Yu Yang 已提交
464 465 466

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
Y
Yu Yang 已提交
467 468 469 470
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
Y
Yu Yang 已提交
471 472

          auto *dep_var = new DependencyVarHandle();
Y
Yu Yang 已提交
473

Y
Yu Yang 已提交
474 475 476 477 478 479 480 481 482 483
          dep_var->generated_op_ = read_op;
          read_op->outputs_.emplace_back(dep_var);

          dep_var->pending_ops_.emplace_back(write_op);
          write_op->inputs_.emplace_back(dep_var);
          member_->dep_vars_.emplace(dep_var);
        }
      }
    }
  }
Y
Yu Yang 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
}

void ParallelExecutor::GenerateVar(OpHandle *op_handle,
                                   const std::string &each_var_name,
                                   const platform::Place &place) const {
  auto &vars = member_->vars_[place][each_var_name];
  size_t version = vars.size();
  auto &var = vars[version];
  var.version_ = version;
  var.generated_op_ = op_handle;
  var.name_ = each_var_name;
  var.place_ = place;
  op_handle->outputs_.emplace_back(&var);
}

VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
                                          const platform::Place &place) const {
  auto &var_holders = member_->vars_[place];
  auto &var_holder = var_holders[each_var_name];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    auto &init_var = var_holder[0];
    init_var.place_ = place;
    init_var.name_ = each_var_name;
    init_var.generated_op_ = nullptr;
    init_var.version_ = 0;
    var = &init_var;
  } else {
    var = &var_holder.rbegin()->second;
  }
  return var;
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
Y
Yu Yang 已提交
519
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
520
  auto *main_scope = member_->local_scopes_[member_->main_place_];
Y
Yu Yang 已提交
521

Y
Yu Yang 已提交
522 523 524 525 526 527 528 529
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
      ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
      auto &dims = main_tensor.dims();
      size_t numel = main_tensor.numel();

Y
Stash  
Yu Yang 已提交
530
      platform::dynload::ncclGroupStart();
Y
Yu Yang 已提交
531

Y
Update  
Yu Yang 已提交
532 533 534 535 536 537 538 539 540 541 542 543
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[place];
          auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }

Y
Stash  
Yu Yang 已提交
544
        auto &nccl_ctx = member_->GetNCCLCtx(place);
Y
Update  
Yu Yang 已提交
545
        platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm,
Y
Stash  
Yu Yang 已提交
546
                                     nccl_ctx.stream());
Y
Yu Yang 已提交
547
      }
Y
Stash  
Yu Yang 已提交
548 549 550
      platform::dynload::ncclGroupEnd();
    }
  }
Y
Yu Yang 已提交
551

Y
Yu Yang 已提交
552
  // Debug code, bias should be 1.0f.
Y
Stash  
Yu Yang 已提交
553 554
  for (auto &pair : member_->local_scopes_) {
    member_->GetNCCLCtx(pair.first).ctx_->Wait();
Y
Yu Yang 已提交
555

Y
Stash  
Yu Yang 已提交
556
    auto &b = pair.second->FindVar("fc_0.b_0")->Get<framework::LoDTensor>();
Y
Stash  
Yu Yang 已提交
557 558 559 560
    framework::LoDTensor cpu;
    framework::TensorCopy(b, platform::CPUPlace(), &cpu);
    platform::DeviceContextPool::Instance().Get(b.place())->Wait();
    LOG(INFO) << *cpu.data<float>();
Y
Yu Yang 已提交
561
  }
Y
Stash  
Yu Yang 已提交
562

Y
Yu Yang 已提交
563 564 565 566
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
567

Y
Yu Yang 已提交
568 569 570 571 572
void ParallelExecutor::BuildNCCLCommunicator() const {
#ifdef PADDLE_WITH_CUDA
  for (auto &place_pair : member_->local_scopes_) {
    auto place = place_pair.first;
    int dev_id = boost::get<platform::CUDAPlace>(place).device;
Y
Yu Yang 已提交
573

Y
Yu Yang 已提交
574 575
    member_->communication_streams_.emplace(
        dev_id, ParallelExecutorPrivate::NCCLContext(dev_id));
Y
Yu Yang 已提交
576
  }
Y
Yu Yang 已提交
577 578

  ParallelExecutorPrivate::NCCLContext::InitNCCLContext(
Y
Update  
Yu Yang 已提交
579
      member_->communication_streams_, member_->places_);
Y
Yu Yang 已提交
580
#endif
Y
Yu Yang 已提交
581 582 583 584 585
}

std::vector<LoDTensor> ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
  // Version --> VarHandle
Y
Yu Yang 已提交
586
  member_->exception_.reset();
Y
Yu Yang 已提交
587
  std::unordered_map<VarHandleBase *, bool> pending_vars;
Y
Yu Yang 已提交
588 589 590 591 592
  std::unordered_map<OpHandle *, size_t> pending_ops;

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      for (auto &version_pair : name_pair.second) {
Y
Yu Yang 已提交
593 594
        pending_vars[&version_pair.second] =
            version_pair.second.generated_op_ == nullptr;
Y
Yu Yang 已提交
595 596 597 598
      }
    }
  }

Y
Yu Yang 已提交
599 600 601 602
  for (auto &var : member_->dep_vars_) {
    pending_vars[var.get()] = var->generated_op_ == nullptr;
  }

Y
Yu Yang 已提交
603 604
  std::vector<OpHandle *> to_run;

Y
Yu Yang 已提交
605
  for (auto &op : member_->ops_) {
Y
Yu Yang 已提交
606 607 608 609 610 611 612 613 614
    if (op->inputs_.empty()) {  // Special case, Op has no input.
      to_run.emplace_back(op.get());
    } else {
      pending_ops.insert({op.get(), op->inputs_.size()});
    }
  }

  for (auto *op : to_run) {
    RunOp(pending_vars, op);
Y
Yu Yang 已提交
615 616
  }

Y
Yu Yang 已提交
617
  while (!pending_ops.empty()) {
Y
Yu Yang 已提交
618
    VarHandleBase *ready_var = nullptr;
Y
Yu Yang 已提交
619 620 621
    for (auto &pair : pending_vars) {
      if (pair.second) {
        ready_var = pair.first;
Y
Yu Yang 已提交
622 623
      }
    }
Y
Yu Yang 已提交
624 625

    if (ready_var == nullptr) {
Y
Yu Yang 已提交
626 627 628 629 630 631 632
      // FIXME use conditional var instead of busy wait.

      if (member_->exception_) {
        throw * member_->exception_;
      }

      std::this_thread::yield();
Y
Yu Yang 已提交
633
      continue;
Y
Yu Yang 已提交
634 635
    }

Y
Yu Yang 已提交
636 637
    pending_vars.erase(ready_var);

Y
Yu Yang 已提交
638
    to_run.clear();
Y
Yu Yang 已提交
639 640 641 642 643 644

    for (auto *op : ready_var->pending_ops_) {
      auto &deps = pending_ops[op];
      --deps;
      if (deps == 0) {
        to_run.emplace_back(op);
Y
Yu Yang 已提交
645 646 647 648 649
      }
    }

    for (auto *op : to_run) {
      pending_ops.erase(op);
Y
Yu Yang 已提交
650
      RunOp(pending_vars, op);
Y
Yu Yang 已提交
651 652 653 654
    }
  }
  return std::vector<LoDTensor>();
}
Y
Yu Yang 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

void ParallelExecutor::RunOp(
    std::unordered_map<VarHandleBase *, bool> &pending_vars,
    OpHandle *op) const {
  std::vector<bool *> ready_buffer;
  for (auto *var : op->outputs_) {
    ready_buffer.emplace_back(&pending_vars[var]);
  }

  auto op_run = [ready_buffer, op, this] {
    try {
      // TODO(yy) Check Previous Op has same dev ctx.
      op->Run();
      for (auto *ready : ready_buffer) {
        *ready = true;
      }
    } catch (platform::EnforceNotMet ex) {
      member_->exception_.reset(new platform::EnforceNotMet(ex));
    } catch (...) {
      LOG(FATAL) << "Unknown exception catched";
    }
  };

  member_->pool_.enqueue(op_run);
}
Y
Yu Yang 已提交
680
}  // namespace framework
Y
Yang Yang 已提交
681
}  // namespace paddle