decorator.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15 16
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
17
import multiprocessing
18
import six
Q
Qiao Longfei 已提交
19
import sys
20
import warnings
21
import logging
T
tangwei12 已提交
22

23
from six.moves.queue import Queue
24
from six.moves import zip_longest
25 26
from six.moves import map
from six.moves import zip
27 28
import itertools
import random
T
tangwei12 已提交
29
import zlib
30

M
minqiyang 已提交
31
import paddle.compat as cpt
32
from paddle.fluid.reader import QUEUE_GET_TIMEOUT
33

34 35
__all__ = []

36
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
37
# Paddle is currently unable to solve this, so forces the process to start using
38 39
# the 'fork' start method.
#
40
# TODO: This solution is not good, because the fork start method could lead to
41 42 43 44 45
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
46
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
47 48 49 50
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

51

S
sneaxiy 已提交
52 53
def cache(reader):
    """
54
    Cache the reader data into memory.
S
sneaxiy 已提交
55

56 57 58
    Be careful that this method may take long time to process,
    and consume lots of memory. :code:`reader()` would only
    call once.
S
sneaxiy 已提交
59 60

    Args:
61
        reader (generator): a reader object which yields
S
sneaxiy 已提交
62 63 64
            data each time.

    Returns:
S
sneaxiy 已提交
65
        generator: a decorated reader object which yields data from cached memory.
66

67 68 69 70
    Examples:
        .. code-block:: python

            import paddle
71

72 73 74
            def reader():
                for i in range(3):
                    yield i
75

76 77
            # All data is cached into memory
            cached_reader = paddle.io.cache(reader)
78

79 80 81
            # Output: 0 1 2
            for i in cached_reader():
                print(i)
S
sneaxiy 已提交
82 83 84 85 86 87 88 89 90 91
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
92 93 94
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
95
    output of each data reader as arguments.
H
Helin Wang 已提交
96

97 98 99 100 101 102
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
103
        func: a function to read data and compute result, the output of this function
104 105
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
122 123 124 125 126 127
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
128
        for e in map(func, *rs):
H
Helin Wang 已提交
129 130 131 132 133
            yield e

    return reader


H
Helin Wang 已提交
134
def shuffle(reader, buf_size):
135
    """
136 137
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
138

139
    This API creates a decorated reader that outputs the shuffled data.
140

141
    The output data from the origin reader will be saved into a buffer,
142
    and then shuffle the data. The size of buffer is determined by argument buf_size.
143

144 145 146
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
163 164
    """

H
Helin Wang 已提交
165
    def data_reader():
166
        buf = []
H
Helin Wang 已提交
167
        for e in reader():
168 169 170 171 172 173 174 175 176 177 178 179
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
180
    return data_reader
181 182


H
Helin Wang 已提交
183
def chain(*readers):
184
    """
185
    Use the input data readers to create a chained data reader. The new created reader
186 187
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
188

189 190 191 192 193 194 195 196
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
197
    The chained reader will output:
198
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
230 231 232

    """

H
Helin Wang 已提交
233
    def reader():
234
        rs = []
H
Helin Wang 已提交
235
        for r in readers:
236 237 238 239 240
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
241
    return reader
242 243


H
Helin Wang 已提交
244
class ComposeNotAligned(ValueError):
245 246 247
    pass


H
Helin Wang 已提交
248
def compose(*readers, **kwargs):
249 250
    """
    Creates a data reader whose output is the combination of input readers.
251

H
Helin Wang 已提交
252
    If input readers output following data entries:
253
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
254
    The composed reader will output:
255 256
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
257
    Args:
258
        readers (Reader|list of Reader): readers that will be composed together.
H
huzhiqiang 已提交
259 260 261 262 263
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

264
    Returns:
H
huzhiqiang 已提交
265 266 267 268
        the new data reader (Reader).

    Examples:
        .. code-block:: python
269

H
huzhiqiang 已提交
270 271 272 273 274 275 276
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
277 278 279 280 281 282 283 284 285
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
286
    def reader():
287
        rs = []
H
Helin Wang 已提交
288
        for r in readers:
289 290
            rs.append(r())
        if not check_alignment:
291 292
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
293
        else:
294
            for outputs in zip_longest(*rs):
295 296 297
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
298 299
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
300
                yield sum(list(map(make_tuple, outputs)), ())
301

H
Helin Wang 已提交
302
    return reader
303 304


H
Helin Wang 已提交
305
def buffered(reader, size):
306 307
    """
    Creates a buffered data reader.
308

H
Helin Wang 已提交
309 310
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
311
    as the buffer is not empty.
312

313 314 315 316 317 318
    Args:
        reader(generator): the data reader to read from.
        size(int): max buffer size.

    Returns:
        generator: the buffered data reader.
319

320 321
    Examples:
        .. code-block:: python
322

323
            import paddle
324

325 326 327
            def reader():
                for i in range(3):
                    yield i
328

329 330
            # Create a buffered reader, and the buffer size is 2.
            buffered_reader = paddle.io.buffered(reader, 2)
331

332 333 334
            # Output: 0 1 2
            for i in buffered_reader():
                print(i)
335 336 337 338 339 340 341 342 343 344 345 346
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
347 348
    def data_reader():
        r = reader()
349
        q = Queue(maxsize=size)
350 351 352 353
        t = Thread(target=read_worker, args=(
            r,
            q,
        ))
354 355 356 357 358 359 360
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
361
    return data_reader
Y
Yu Yang 已提交
362 363


Y
Yu Yang 已提交
364
def firstn(reader, n):
Y
Yu Yang 已提交
365
    """
366 367
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
368 369

    This API creates a decorated reader, and limits the max number of
370
    samples that reader could return.
Y
Yu Yang 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
390
            # the outputs are: 0 1 2 3 4
Y
Yu Yang 已提交
391 392
    """

Y
Yu Yang 已提交
393 394 395 396
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
397
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
398
            if i == n:
Y
Yu Yang 已提交
399 400 401
                break
            yield item

Y
Yu Yang 已提交
402
    return firstn_reader
403 404 405 406 407 408


class XmapEndSignal():
    pass


409
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
410
    """
Z
Zeng Jinle 已提交
411 412 413 414
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
415
        reader (callable): a data reader which yields the data.
Z
Zeng Jinle 已提交
416
        process_num (int): thread number to handle original sample.
417 418
        buffer_size (int): size of the queue to read data in.
        order (bool): whether to keep the data order from original reader.
Z
Zeng Jinle 已提交
419 420 421
            Default False.

    Returns:
422
        callable: a decorated reader with data mapping.
423 424
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
425

426 427 428 429 430
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
431

432 433 434 435
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
436 437
            in_queue.put((in_order, i))
            in_order += 1
438
        in_queue.put(end)
439 440 441 442 443 444 445 446 447 448 449

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
450

451 452 453 454 455 456 457 458 459 460
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
461
            out_order[0] += 1
462 463 464
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
465 466

    def xreader():
467 468
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
469 470 471 472 473 474 475 476
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
477 478
        args = (in_queue, out_queue, mapper,
                out_order) if order else (in_queue, out_queue, mapper)
479
        workers = []
480
        for i in range(process_num):
481 482 483 484 485 486
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

487 488 489 490 491 492 493 494 495 496 497 498 499
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
500 501


Q
Qiao Longfei 已提交
502 503
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
504
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
505 506 507
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge
    these data. A separate process will be created for each reader in the
    ``readers`` list, please guarantee every reader can work independently
508 509
    to avoid conflicts in parallel environment.

510 511

    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported
512
    in some platforms.
Q
Qiao Longfei 已提交
513

514
    Parameters:
515
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list
516 517 518 519 520 521
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
522

523 524
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
525

526 527

    Example:
Q
Qiao Longfei 已提交
528 529 530

    .. code-block:: python

531 532 533
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
534

535
        sample_files = ['sample_file_1', 'sample_file_2']
536

537 538 539 540 541
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
542 543


544 545 546 547 548 549 550
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
551

552 553 554
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
555

556 557 558
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
559
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2])
560 561
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
562

563
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
564

565 566
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
567

568
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
569

570 571
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
572

573 574 575 576 577 578 579 580 581
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
582 583
    """

584 585 586 587
    if sys.platform == 'win32':
        raise NotImplementedError(
            "The multiprocess_reader method is not supported on windows.")

588
    # ujson is ultra fast json encoder and decoder written in pure C with bindings for Python 3.6+.
Q
Qiao Longfei 已提交
589 590 591
    try:
        import ujson as json
    except Exception as e:
592 593 594
        warnings.warn(
            "The `ujson` module is not found, use the `json` module, `ujson` encodes and decodes faster, "
            "you can install `ujson` through `pip install ujson`.")
Q
Qiao Longfei 已提交
595 596
        import json

597 598
    assert isinstance(readers, (list, tuple)) and len(readers) > 0, (
        "`readers` must be list or tuple.")
Q
Qiao Longfei 已提交
599 600

    def _read_into_queue(reader, queue):
601 602 603 604 605 606 607 608 609
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
610 611

    def queue_reader():
612
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
613
        for reader in readers:
614 615
            p = fork_context.Process(target=_read_into_queue,
                                     args=(reader, queue))
Q
Qiao Longfei 已提交
616 617 618 619 620
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
621 622 623 624 625 626 627 628
            try:
                sample = queue.get(timeout=QUEUE_GET_TIMEOUT)
            except:
                logging.error(
                    "multiprocess_reader failed to get data from the multiprocessing.Queue."
                )
                six.reraise(*sys.exc_info())

Q
Qiao Longfei 已提交
629 630
            if sample is None:
                finish_num += 1
631
            elif sample == "":
632 633 634
                raise ValueError(
                    "multiprocess_reader failed to put data into the multiprocessing.Queue."
                )
Q
Qiao Longfei 已提交
635 636 637 638
            else:
                yield sample

    def _read_into_pipe(reader, conn):
639 640 641 642 643 644 645 646 647 648 649
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
650 651 652 653

    def pipe_reader():
        conns = []
        for reader in readers:
654
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
655
            conns.append(parent_conn)
656 657
            p = fork_context.Process(target=_read_into_pipe,
                                     args=(reader, child_conn))
Q
Qiao Longfei 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
673 674 675
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
676 677 678
                    raise ValueError(
                        "multiprocess_reader failed to send data into the multiprocessing.Pipe."
                    )
Q
Qiao Longfei 已提交
679 680 681 682 683 684 685
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader