conv_mkldnn_op.cc 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
17
#include "paddle/fluid/platform/cpu_info.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19

W
wanghuancoder 已提交
20 21 22 23 24 25
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

26 27 28
namespace paddle {
namespace operators {

29 30 31 32 33 34
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
35
using platform::to_void_cast;
36

37 38 39
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
40
  if (is_conv3d) {
41
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
42
  } else {
43
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
44 45 46
  }
}

47
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
48
                                            bool force_fp32_output,
49
                                            std::string fuse_activation,
50 51
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
52
  auto dst_dt = mkldnn::memory::data_type::f32;
53 54 55 56 57 58 59
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
60 61
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
62
      if (dst_dt != residual_dt) dst_dt = residual_dt;
63
    }
64 65 66 67 68 69 70
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
71 72 73 74
  }
  return dst_dt;
}

75
template <typename T, typename K, typename T_out>
76 77
class ConvMKLDNNHandlerT
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward> {
78
 public:
79 80 81 82 83 84 85 86
  ConvMKLDNNHandlerT(const paddle::framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward>(
            dev_ctx, mkldnn_engine, cpu_place,
87
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
88 89 90 91 92 93 94 95 96 97
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, input->layout()));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
98

99 100 101 102 103 104 105 106
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
120

121 122 123 124 125 126 127 128 129 130 131 132
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
133

134 135 136 137 138 139 140 141 142
      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
143

144 145 146 147 148 149
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
150

151 152 153 154 155 156 157 158 159
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
160

161 162 163 164 165 166
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
167

168 169
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
170

171 172
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
173

174 175
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
176

177 178 179
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
180

181 182
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
183

184 185
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
186

187
      const auto src_tz = paddle::framework::vectorize(input->dims());
188

189
      auto weights_tz = paddle::framework::vectorize(filter->dims());
190
      platform::GetGroupConvWeightsTz(weights_tz, groups);
191

192
      const auto dst_tz = paddle::framework::vectorize(output->dims());
193

194 195
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
196
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
197

198 199 200 201
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
202 203
      auto chosen_memory_format = MKLDNNMemoryFormat::any;

204 205 206 207 208 209 210 211 212
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

      const auto src_md =
          platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
      const auto weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                                      MKLDNNMemoryFormat::any);
213
      const auto dst_md = platform::MKLDNNMemDesc(
214
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
215

216 217
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
218

219 220
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn);
A
Adam 已提交
221

222 223
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
224 225
        auto bias_md =
            platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
226 227 228

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
229
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
230 231 232 233
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
234 235
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
236 237 238
      }
    }
  }
239

240 241 242 243 244 245 246 247 248 249
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
J
jakpiase 已提交
274 275 276 277
    } else if (fuse_activation == "hard_swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_hardswish, fuse_alpha, fuse_beta);
278 279 280 281
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
282

283 284 285
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
286 287
    const std::string user_key_suffix{"@src_mem_p_user"};
    auto user_src_mem_p = this->AcquireMemory(user_key_suffix);
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    if (!user_src_mem_p) {
      auto user_src_md = platform::MKLDNNMemDesc(
          framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
          input->format());
      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->src_desc(), to_void_cast<T>(input_data),
          "@src_mem_p");
    } else {
      const std::string target_key_suffix{"@src_mem_p_target"};
      const auto target_src_mem_p = this->AcquireMemory(target_key_suffix);
      user_src_mem_p->set_data_handle(to_void_cast<T>(input_data));
      if (user_src_mem_p != target_src_mem_p) {
        this->AcquireReorder(user_src_mem_p, target_src_mem_p, "@src_mem_p");
      }
      return target_src_mem_p;
    }
305 306 307 308 309 310 311 312 313 314 315
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
      const bool is_test) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
316
      const K* filter_data = filter->data<K>();
317
      auto weights_tz = framework::vectorize(filter->dims());
318
      platform::GetGroupConvWeightsTz(weights_tz, groups);
319 320

      auto user_src_md = platform::MKLDNNMemDesc(
321
          weights_tz, platform::MKLDNNGetDataType<K>(),
322 323 324 325
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
326
          to_void_cast<K>(filter_data), "@weights_mem_p", is_test);
327
    }
328
  }
329

330 331
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
      const framework::Tensor* bias, const bool is_test) {
332 333 334 335 336 337 338 339 340 341 342 343 344
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
    if (is_test && bias_mem_p) {
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
          user_bias_md, this->fwd_pd_->bias_desc(), to_void_cast<K>(bias_data),
          "@bias_mem_p", is_test);
    }
345
  }
346

347 348
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
349 350 351 352
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
            ? to_void_cast<T_out>(residual_param->data<T_out>())
            : to_void_cast<T>(residual_param->data<T>());
353 354 355 356 357 358 359 360 361
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
362

363 364 365
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
366 367 368 369 370 371 372 373
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
374
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
375 376 377 378 379 380
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
381
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
382 383 384 385 386 387 388 389 390 391 392 393 394 395
    }
    return dst_memory_p;
  }
};

template <typename T, typename K>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
396 397 398 399 400 401 402 403
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
404
    if (!is_INT8) {
405 406 407 408 409
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
410
    } else {
411 412 413 414 415 416 417
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
418
    }
419
  }
420

421
  template <typename T_out>
422 423 424 425
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
426

427 428 429
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
430

431 432 433 434 435
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
436

437
    ConvMKLDNNHandlerT<T, K, T_out> handler(
438 439
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
440

441
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
442

443 444
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
445

446 447 448
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
449
      dst_memory_p =
450 451
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
452
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
453
    }
454

455
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
456

457 458 459 460
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
461

462 463 464
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
465
    }
466

467
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
468
    conv_p->execute(astream, args);
A
Adam 已提交
469
    astream.wait();
470

471 472
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
473
  }
474

475
  template <typename T_out>
476 477 478 479 480 481 482 483 484 485
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

486
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
487 488 489
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
490
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
504

505
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
506
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
507 508
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
509

510 511
    const T* input_data = input->data<T>();

A
Adam 已提交
512
    auto src_tz = paddle::framework::vectorize(input->dims());
513

X
xiaolil1 已提交
514 515
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
516

517 518 519
    std::string key =
        platform::CreateKey(dev_ctx, src_tz, src_dt,
                            ctx.InputName("Input") + ctx.InputName("Filter"));
520

521 522
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
523 524 525
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
526
    std::shared_ptr<mkldnn::memory> dst_memory_p;
527
    std::vector<primitive> pipeline;
528
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
529 530 531 532 533
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
534 535 536 537 538 539 540 541 542 543 544
    auto key_tid = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

    auto prim_key = key_tid + "@conv_p";
    auto dst_key = key_tid + "@dst_mem_p";
    auto src_key = key_tid + "@src_mem_p";
    auto weights_key = key_tid + "@weights_mem_p";
    auto bias_key = key_tid + "@bias_mem_p";
    auto user_src_key = key_tid + "@user_src_mem_p";
    auto user_residual_key = key_tid + "@user_residual_data_mem_p";
    auto src_reorder_key = key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key_tid + "@residual_data_mem_preorder_p";
545 546 547 548

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

549
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
550

551
    if (conv_p == nullptr || !is_test) {
552 553 554 555 556 557
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
558 559 560 561 562
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
563
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
577 578 579

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
580 581
          platform::errors::Unimplemented(
              "residual fusion does not support force output with fp32"));
582 583 584 585

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
586 587 588 589 590
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
591
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
592 593
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
594 595

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
596 597 598 599
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
600 601
      }

A
Adam 已提交
602 603 604 605 606 607 608 609 610 611
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

612 613
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
614 615 616 617

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
618 619
                        platform::errors::Unimplemented(
                            "int8 does not support conv3d currently"));
620

621 622 623 624 625 626
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
627
      auto ksize = framework::vectorize(filter_data_dims);
628 629 630 631

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

632
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
633
      auto weights_tz = paddle::framework::vectorize(filter->dims());
634 635
      int g = std::max(groups, 1);

636
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam 已提交
637
      auto dst_tz = paddle::framework::vectorize(output->dims());
638

639 640
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
670

671 672 673 674 675 676 677
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
678 679 680
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
681
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
682

A
Adam 已提交
683
      std::vector<int64_t> bias_tz;
684 685 686 687 688 689 690 691 692 693 694 695 696

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
697

698
      if (bias) {
A
Adam 已提交
699
        bias_tz = paddle::framework::vectorize(bias->dims());
700 701 702
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
703
            src_md, weights_md, bias_md, dst_md, strides, dilations, paddings,
704 705 706 707
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
708 709
            src_md, weights_md, boost::none, dst_md, strides, dilations,
            paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
710 711
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
732 733 734 735 736 737 738
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
739 740 741 742
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
743
              paddle::framework::vectorize(residual_param->dims());
744 745 746 747 748 749
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
750
          output->ShareDataWith(*residual_param);
751 752 753 754 755 756 757 758
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
759

760 761
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
762
      conv_p = handler->AcquireConvolution();
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
783 784 785 786
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
787
      } else {
A
Adam 已提交
788 789 790
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
791 792
      }
    } else {
A
Adam 已提交
793
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
794 795 796 797 798 799 800
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
801 802 803 804 805 806 807
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                        *src_memory_p);
          astream.wait();
        }
808 809 810
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
811 812
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
813 814 815 816 817 818 819 820 821
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
822

823 824
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
825
        output->ShareDataWith(*residual_param);
826 827 828
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
829
      }
830
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
831

A
Adam 已提交
832
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
833 834
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
835 836
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
837 838 839 840 841 842 843
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          residual_reorder_p->execute(astream, *user_residual_data_p,
                                      *dst_memory_p);
          astream.wait();
        }
A
Adam 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
858 859
      }
    }
A
Adam 已提交
860
    astream.wait();
861
    if (need_s8_to_u8) {
X
xiaolil1 已提交
862 863
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
864 865 866
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
867 868 869
};

template <typename T>
870
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
871 872
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
873 874 875
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
876 877
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
878 879 880 881 882 883 884 885 886
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

887
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
888 889 890
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
891
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
892 893
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
894

F
FDInSky 已提交
895 896 897 898 899
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
900
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
901 902
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
903

F
FDInSky 已提交
904 905 906 907 908
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
909
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
910 911
                      platform::errors::InvalidArgument(
                          "Wrong format set for output_grad tensor"));
912 913 914

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
915 916
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
917

918 919
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
920 921 922 923 924 925 926 927 928
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

929
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
930

931
    int groups = ctx.Attr<int>("groups");
932

933
    bool is_conv3d = strides.size() == 3U;
934 935 936 937 938 939
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

940 941 942 943 944 945
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
946
    auto ksize = framework::vectorize(filter_data_dims);
947 948 949 950

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
951 952 953
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

954
    int g = std::max(groups, 1);
955
    platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam 已提交
956 957
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

958
    auto src_format = input->format();
959
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
960
        GetWeightsFormat(filter->format(), g, is_conv3d);
961

962
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
963
    // as well as attributes of primitive to be created
964
    // This name will be used as key when saving info into device context
965 966
    std::string key = platform::CreateKey(
        dev_ctx, src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
967

968
    const std::string key_conv_pd = key + "@fwd_pd";
969
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
970
    std::vector<primitive> pipeline;
971

972 973
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
974
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
975
    auto user_weights_md = platform::MKLDNNMemDesc(
976
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
977 978
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
979 980 981 982 983

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
J
Jacek Czaja 已提交
984 985 986 987 988 989
    // TODO: NHWC is preferred starting from oneDNN 2.1 . Any may crash
    auto chosen_memory_format =
        platform::MayIUse(platform::cpu_isa_t::avx512_core) &&
                is_conv3d == false
            ? MKLDNNMemoryFormat::nhwc
            : MKLDNNMemoryFormat::any;
990
    weights_format = MKLDNNMemoryFormat::any;
991

992
    auto src_md = platform::MKLDNNMemDesc(
993
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
994
    auto diff_src_md = platform::MKLDNNMemDesc(
995
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
996
    auto weights_md = platform::MKLDNNMemDesc(
997
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
998
    auto diff_weights_md = platform::MKLDNNMemDesc(
999
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
1000
    auto diff_dst_md = platform::MKLDNNMemDesc(
1001
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1002
    // Retrieve conv_pd from device context
1003 1004 1005
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1006
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
1007 1008
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
1009

1010
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
1011 1012 1013
    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });
    const mkldnn::memory::dims dilations_dims = dilations;
1014 1015
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
1016
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
1017 1018
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1019

1020 1021 1022 1023 1024 1025
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
1026
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
1027 1028
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1029

1030 1031 1032 1033
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
1034 1035 1036
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
1037 1038 1039 1040 1041 1042 1043 1044

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1045
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
1046
    if (filter_grad) {
1047 1048
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1049

1050 1051 1052 1053
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1054
      const size_t size = handler.GetDiffWeightsMemorySize();
1055
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
1056

1057 1058
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
1059
      auto diff_weights_memory_p =
1060 1061 1062
          g > 1 ? handler.AcquireDiffWeightsMemoryFromWeightsPrimitive()
                : handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
                      reinterpret_cast<void*>(filter_grad_data));
1063

A
Adam 已提交
1064
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
1065

A
Adam 已提交
1066 1067 1068 1069 1070 1071
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
1072

1073
      filter_grad->set_layout(DataLayout::kMKLDNN);
1074 1075 1076
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
      auto filter_fmt = GetMKLDNNFormat(*diff_weights_memory_p);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
        memory::data_type in_type =
            framework::ToMKLDNNDataType(filter_grad->type());
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
1088 1089 1090
        std::string key = platform::CreateKey(dev_ctx, weights_tz, filter_fmt,
                                              out_format, in_type);
        key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

        platform::ReorderMKLDNNHandler handler(weights_tz, filter_grad->type(),
                                               in_type, dev_ctx, mkldnn_engine,
                                               key);
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

1101 1102 1103 1104 1105 1106 1107
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1119 1120
    }
    if (input_grad) {
1121 1122 1123 1124 1125 1126 1127
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1128
      const size_t size = handler.GetDiffSourceMemorySize();
1129
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1130

1131 1132 1133
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1134
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1135

A
Adam 已提交
1136 1137 1138 1139 1140
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1141

1142 1143
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1144
    }
X
xiaolil1 已提交
1145
  }
1146
};
1147

1148 1149 1150 1151 1152
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1153 1154 1155
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1156
                                    ops::ConvMKLDNNOpKernel<float, float>);
1157

1158 1159 1160 1161
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1162 1163
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1164
                                    ops::kConvMKLDNNINT8,
1165
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1166 1167 1168

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1169
                                    ops::kConvMKLDNNINT8,
1170
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1171 1172 1173 1174 1175

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1176 1177 1178 1179

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1180
                                    ops::ConvMKLDNNOpKernel<float, float>);
1181 1182 1183 1184 1185

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);