conv_mkldnn_op.cc 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

A
Adam 已提交
32 33
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                         int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
Y
Yihua Xu 已提交
60 61 62
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
78 79 80 81 82 83 84
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
85 86
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
87
      if (dst_dt != residual_dt) dst_dt = residual_dt;
88 89 90 91 92
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
134
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
135 136 137 138
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
139
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
A
Adam 已提交
159
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
160 161 162 163
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165

A
Adam 已提交
166 167 168 169 170 171 172 173 174
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

175 176 177
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
178
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
179
    int groups = ctx.Attr<int>("groups");
180
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
181
    bool is_conv3d = strides.size() == 3U;
182

183 184 185 186 187 188
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
189
    auto ksize = framework::vectorize(filter_data_dims);
190 191 192 193

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
194 195
    std::vector<primitive> pipeline;

196
    PADDLE_ENFORCE(
197 198 199 200
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
201 202 203 204 205
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

A
Adam 已提交
206 207
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());
208
    int g = std::max(groups, 1);
A
Adam 已提交
209

210
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
211 212

    auto dst_tz = paddle::framework::vectorize(output->dims());
213

214
    // Get unique name for storing MKLDNN primitives
215
    const std::string key = platform::CreateKey(
H
hong 已提交
216
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
217

218
    auto src_format = input->format();
219
    MKLDNNMemoryFormat weights_format =
220 221 222 223 224 225
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
226 227 228 229 230

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
231 232 233 234
    // TODO(jczaja): This is workaround to make grad op UT's numerical
    // gradient computation proper as this op is called directly without
    // fetch op following it , so numercial grad is computed (in python)
    // using block formats which will give wrong results
235 236
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
237 238
        is_test ? MKLDNNMemoryFormat::any
                : platform::data_format_to_memory_format(data_format);
239

240
    weights_format = MKLDNNMemoryFormat::any;
241
    // Check the format for user's special output
242
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
243 244 245 246
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
247 248
    }

249
    auto src_md = platform::MKLDNNMemDesc(
250
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
251
    auto weights_md = platform::MKLDNNMemDesc(
252
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
A
Adam 已提交
253
    std::vector<int64_t> bias_tz;
254
    auto dst_md = platform::MKLDNNMemDesc(
255
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
256

257 258
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

259
    // create a conv primitive descriptor and save it for usage in backward
260
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
261 262
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
263
    if (bias) {
A
Adam 已提交
264
      bias_tz = paddle::framework::vectorize(bias->dims());
265
      auto bias_md = platform::MKLDNNMemDesc(
266
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
267
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
268
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
269
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
270
          fwd_prop_kind);
271
    } else {
272 273
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
274 275
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
276
    }
277

278
    // create mkldnn memory from input tensors (data/weights)
279 280
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
281
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
282
        user_weights_md, to_void_cast<T>(filter_data));
283

284 285 286 287 288
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
289

290
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
291

292
    if (fuse_residual_conn) {
293 294
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
295

296 297
      PADDLE_ENFORCE_NE(
          residual_param_data, nullptr,
298 299 300 301
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
302

303
      if (residual_param->format() != handler.GetDstFormat()) {
304 305
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
306
        auto residual_data_tz =
A
Adam 已提交
307
            paddle::framework::vectorize(residual_param->dims());
308 309 310 311 312
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
313
        user_residual_memory_p = handler.AcquireResidualDataMemory(
314
            user_residual_md, to_void_cast<T>(residual_param_data));
315 316 317

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
318
      } else {
319 320 321
        auto output_data = output->mutable_data<T>(
            ctx.GetPlace(), residual_param->memory_size());
        framework::TensorCopy(*residual_param, residual_param->place(), output);
322 323
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
324
      }
325
    } else {
326 327
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
328 329
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
330
    }
331

A
Adam 已提交
332 333 334
    auto conv_p = handler.AcquireConvolution();

    mkldnn::stream astream(mkldnn_engine);
335 336 337
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
338
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
A
Adam 已提交
339
      auto user_bias_memory_p =
340 341
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

A
Adam 已提交
342
      auto bias_memory_p =
343
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
A
Adam 已提交
344 345 346 347 348 349

      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_BIAS, *bias_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});

350
    } else {
A
Adam 已提交
351 352 353
      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
354
    }
A
Adam 已提交
355
    astream.wait();
356

357 358
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
359
  }
360
  template <typename T_out>
361 362 363 364 365 366 367 368 369 370
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

371 372
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
373
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
374 375 376 377 378 379 380 381 382
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

383
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
384
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
385 386
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
387

388 389
    const T* input_data = input->data<T>();

A
Adam 已提交
390
    auto src_tz = paddle::framework::vectorize(input->dims());
391

X
xiaolil1 已提交
392 393
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
394

L
lidanqing 已提交
395
    std::string key = platform::CreateKey(
H
hong 已提交
396
        src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
397

398 399
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
400 401 402
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
403
    std::shared_ptr<mkldnn::memory> dst_memory_p;
404
    std::vector<primitive> pipeline;
405
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
406 407 408 409 410 411 412 413 414
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
415
    }
416

417 418 419
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
A
Adam 已提交
420 421
    auto weights_key = key + key_tid + "@weights_mem_p";
    auto bias_key = key + key_tid + "@bias_mem_p";
422
    auto user_src_key = key + key_tid + "@user_src_mem_p";
A
Adam 已提交
423
    auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
424 425 426 427 428 429
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

A
Adam 已提交
430 431
    mkldnn::stream astream(mkldnn_engine);

432
    if (conv_p == nullptr || !is_test) {
433 434 435 436 437 438 439 440
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

      PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Filter tensor");
A
Adam 已提交
441
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                        "Wrong format set for Filter tensor");

      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
          "residual fusion does not support force output with fp32");

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
        PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                          "Wrong layout set for Bias tensor");
A
Adam 已提交
460
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
461 462 463 464 465 466
                          "Wrong format set for Bias tensor");

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          "Bias must only have 1 dimension, i.e. X");
      }

A
Adam 已提交
467 468 469 470 471 472 473 474 475 476
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

477 478
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
479 480 481 482 483 484

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
                        "int8 does not support conv3d currently");

485 486 487 488 489 490
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
491
      auto ksize = framework::vectorize(filter_data_dims);
492 493 494 495

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

496
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
497
      auto weights_tz = paddle::framework::vectorize(filter->dims());
498 499 500
      int g = std::max(groups, 1);

      GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
501
      auto dst_tz = paddle::framework::vectorize(output->dims());
502 503 504 505 506 507 508 509

      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, "dilation in convolution is not implemented yet");

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
538

539 540 541 542 543 544 545 546 547 548
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
549
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
550

A
Adam 已提交
551
      std::vector<int64_t> bias_tz;
552 553 554 555 556 557 558 559 560 561 562 563 564

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
565

566
      if (bias) {
A
Adam 已提交
567
        bias_tz = paddle::framework::vectorize(bias->dims());
568 569 570 571 572 573 574 575 576 577 578 579
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
607
              paddle::framework::vectorize(residual_param->dims());
608 609 610 611 612 613
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
614 615
          framework::TensorCopy(*residual_param, residual_param->place(),
                                output);
616 617 618 619 620 621 622 623
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
624

625 626
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
627
      conv_p = handler->AcquireConvolution();
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
648 649 650 651
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
652
      } else {
A
Adam 已提交
653 654 655
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
656 657
      }
    } else {
A
Adam 已提交
658
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
659 660 661 662 663 664 665
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
A
Adam 已提交
666 667 668
        src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                      *src_memory_p);
        astream.wait();
669 670 671
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
672 673
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
674 675 676 677 678 679 680 681 682
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
683

684 685
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
686
        framework::TensorCopy(*residual_param, residual_param->place(), output);
687 688 689
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
690
      }
691
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
692

A
Adam 已提交
693
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
694 695
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
        residual_reorder_p->execute(astream, *user_residual_data_p,
                                    *dst_memory_p);
        astream.wait();
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
715 716
      }
    }
A
Adam 已提交
717
    astream.wait();
718
    if (need_s8_to_u8) {
X
xiaolil1 已提交
719 720
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
721 722 723
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
724 725 726
};

template <typename T>
727
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
728 729 730 731 732
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

733 734
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
735 736 737 738 739 740 741 742 743
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

744 745
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
746
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
747
                      "Wrong format set for Input tensor");
748

749 750
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
751
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
752 753 754 755
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
A
Adam 已提交
756
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
757 758 759 760
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
761 762
        "is_test attribute should be set to False in training phase.");

763 764
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
765 766 767 768 769 770 771 772 773
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

774
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
775

776
    int groups = ctx.Attr<int>("groups");
777

778
    bool is_conv3d = strides.size() == 3U;
779 780 781 782 783 784
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

785 786 787 788 789 790
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
791
    auto ksize = framework::vectorize(filter_data_dims);
792 793 794 795

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
796 797 798
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

799
    int g = std::max(groups, 1);
800
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
801 802
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

803
    auto src_format = input->format();
804
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
805
        GetWeightsFormat(filter->format(), g, is_conv3d);
806

807
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
808
    // as well as attributes of primitive to be created
809
    // This name will be used as key when saving info into device context
810
    const std::string key = platform::CreateKey(
H
hong 已提交
811
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
812 813

    const std::string key_conv_pd = key + "@conv_pd";
814
    std::vector<primitive> pipeline;
815

816 817
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
818
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
819
    auto user_weights_md = platform::MKLDNNMemDesc(
820
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
821 822
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
823 824 825 826 827

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
828 829 830 831 832 833 834 835 836

    // TODO(jczaja): Once GRAD NHWC is working then format 'any'
    // should be used exclusively. But till forward pass enforce
    // NCHW for training we need to have NCHW here as well
    // to avoid performance degradation in relu_grad and pool2d_grad
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

837
    weights_format = MKLDNNMemoryFormat::any;
838 839 840 841 842 843 844
    // Check the format for user's special output
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
    }
845

846
    auto src_md = platform::MKLDNNMemDesc(
847
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
848
    auto diff_src_md = platform::MKLDNNMemDesc(
849
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
850
    auto weights_md = platform::MKLDNNMemDesc(
851
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
852
    auto diff_weights_md = platform::MKLDNNMemDesc(
853
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
854
    auto diff_dst_md = platform::MKLDNNMemDesc(
855
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
856
    // Retrieve conv_pd from device context
857 858 859
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
860 861
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
                      "Fail to find conv_pd in device context");
862

863 864
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

865 866
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
867 868 869
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

870 871 872 873 874 875
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
876 877 878
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

879 880 881 882
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
883 884 885
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
886 887 888 889 890 891 892 893

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
A
Adam 已提交
894
    mkldnn::stream astream(mkldnn_engine);
895
    if (filter_grad) {
896 897
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
898

899 900 901 902
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

903
      const size_t size = handler.GetDiffWeightsMemorySize();
904
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
905

906 907 908 909
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

A
Adam 已提交
910
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
911

A
Adam 已提交
912 913 914 915 916 917
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
918

919 920
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
921 922
    }
    if (input_grad) {
923 924 925 926 927 928 929
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

930
      const size_t size = handler.GetDiffSourceMemorySize();
931
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
932

933 934 935
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
936
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
937

A
Adam 已提交
938 939 940 941 942
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
943

944 945
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
946
    }
X
xiaolil1 已提交
947
  }
948
};
949

950 951 952 953 954
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
955 956 957
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
958
                                    ops::ConvMKLDNNOpKernel<float, float>);
959 960 961

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
962
                                    ops::kConvMKLDNNINT8,
963
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
964 965 966

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
967
                                    ops::kConvMKLDNNINT8,
968
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
969 970 971 972 973

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
974 975 976 977

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
978
                                    ops::ConvMKLDNNOpKernel<float, float>);
979 980 981 982 983

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);