dist_tensor.py 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
16 17 18 19
import inspect

import paddle
from paddle.fluid.framework import Parameter, Block, Variable
20
from .dist_attribute import TensorDistributedAttribute
Z
zhaoyingli 已提交
21
from .utils import _linear_idx2coordinate, __no_shape_var_type__
22 23 24


class DistributedTensor:
25
    """
26
    DistributedTensor represents the distribution of tensor on the process group and
27 28
    local tensors can be created by DistributedTensor.
    Only support even sharding now and uneven sharding will be supported in the future.
29 30
    Local tensor information can be obtained from the DistributedTensor instance object,
    or obtained by the static methods provided by DistributedTensor,
31 32 33 34
    including shard (i.e. the index in the serial tensor), offsets, and sizes.
    """

    @staticmethod
35 36 37 38 39 40 41
    def _validate_sizes_and_dist_attr(
        sizes, dims_mapping, topology, processes, rank=None, shard_sizes=None
    ):
        if not (
            isinstance(sizes, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x >= 0, sizes))
        ):
42
            raise ValueError(
43 44 45 46 47 48 49 50
                "The sizes must be list or tuple and item in sizes must be non-negative integer, but got {}".format(
                    sizes
                )
            )
        if not (
            isinstance(dims_mapping, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x >= -1, dims_mapping))
        ):
51
            raise ValueError(
52 53 54 55 56 57 58 59
                "The dims_mapping must be list or tuple and item in dims_mapping must >= -1, but got {}".format(
                    dims_mapping
                )
            )
        if not (
            isinstance(processes, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x >= 0, processes))
        ):
60
            raise ValueError(
61 62 63 64 65 66 67 68
                "The processes must be list or tuple and item in processes must be integer, but got {}".format(
                    processes
                )
            )
        if not (
            isinstance(topology, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x > 0, topology))
        ):
69
            raise ValueError(
70 71 72 73
                "The topology must be list or tuple and item in topology must be non-negative integer, but got {}".format(
                    topology
                )
            )
74 75 76 77 78 79 80 81
        if rank is not None and not (isinstance(rank, int) and rank >= 0):
            raise ValueError("The rank must >= 0, but got {}".format(rank))

        # NOTE: Only support even sharding now
        if shard_sizes is not None:
            raise ValueError("Only support even sharding now.")

    @staticmethod
82 83 84 85 86 87 88 89 90 91 92
    def get_local_sizes(
        global_sizes,
        dims_mapping,
        topology,
        processes,
        rank=None,
        shard_sizes=None,
    ):
        DistributedTensor._validate_sizes_and_dist_attr(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
93 94 95

        local_sizes = []
        # for even sharding, the local sizes of every rank are equal
96

97
        for idx, item in enumerate(global_sizes):
98 99 100
            # This is a trick to avoid dims_mapping is []
            val = dims_mapping[idx] if idx < len(dims_mapping) else -1
            if val == -1:
101 102 103 104 105 106 107
                local_sizes.append(item)
            else:
                local_sizes.append(item // topology[dims_mapping[idx]])

        return local_sizes

    @staticmethod
108 109 110 111 112 113
    def get_local_offsets(
        global_sizes, dims_mapping, topology, processes, rank, shard_sizes=None
    ):
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
114 115 116 117 118 119 120 121
        local_offsets = []
        rank_relatvie = processes.index(rank)
        coordinate = _linear_idx2coordinate(topology, rank_relatvie)

        for i in range(len(global_sizes)):
            if dims_mapping[i] == -1:
                local_offsets.append(0)
            else:
122 123 124
                local_offsets.append(
                    coordinate[dims_mapping[i]] * local_sizes[i]
                )
125 126 127
        return local_offsets

    @staticmethod
128 129 130 131 132 133 134 135 136 137 138
    def get_global_sizes(
        local_sizes,
        dims_mapping,
        topology,
        processes,
        rank=None,
        shard_sizes=None,
    ):
        DistributedTensor._validate_sizes_and_dist_attr(
            local_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
139 140 141 142 143 144 145 146 147
        global_sizes = []
        for idx, item in enumerate(local_sizes):
            if dims_mapping[idx] == -1:
                global_sizes.append(item)
            else:
                global_sizes.append(item * topology[dims_mapping[idx]])
        return global_sizes

    @staticmethod
148 149 150
    def get_local_shard(
        global_sizes, dims_mapping, topology, processes, rank, shard_sizes=None
    ):
151
        local_offsets = DistributedTensor.get_local_offsets(
152 153 154 155 156
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
157 158 159
        assert len(local_sizes) == len(
            local_offsets
        ), "The length of local_sizes must be equal to local_offsets, but got {} and {}.".format(
160 161
            len(local_sizes), len(local_offsets)
        )
162 163

        local_end_offsets = list(
164 165
            map(lambda x: x[0] + x[1], zip(local_offsets, local_sizes))
        )
166 167 168 169
        local_shard = list(zip(local_offsets, local_end_offsets))
        return local_shard

    def __init__(self, serial_tensor, dist_attr=None, dist_context=None):
170 171 172 173 174
        self._serial_tensor = serial_tensor
        self._dist_attr = None
        self._batch_dim = 0
        # Reuse the dist_attr setter to initialize _dist_attr
        self.dist_attr = dist_attr
175 176 177 178 179
        self._local_offsets_map = {}
        self._local_shard_map = {}
        self._local_tensor_map = {}

        from .dist_context import get_default_distributed_context
180 181 182 183 184

        self._dist_context = (
            dist_context
            if dist_context is not None
            else get_default_distributed_context()
185 186 187
        )
        # TODO: Add Automatically to dist_context after initialized and it will be adapted in the future.
        # self._dist_context.add_dist_tensor_for_program(self)
188 189 190 191 192 193 194 195 196

    @property
    def serial_tensor(self):
        return self._serial_tensor

    @property
    def dist_attr(self):
        return self._dist_attr

197 198 199 200
    @property
    def dist_context(self):
        return self._dist_context

201 202 203 204 205 206 207 208 209
    @dist_attr.setter
    def dist_attr(self, dist_attr):
        if self._dist_attr is None:
            self._dist_attr = TensorDistributedAttribute()
        self._dist_attr.init(dist_attr)
        self._init_default_dist_attr()

    def _init_default_dist_attr(self):
        if self._dist_attr.dims_mapping is None:
Z
zhaoyingli 已提交
210
            if self.serial_tensor.type in __no_shape_var_type__:
211 212 213 214 215 216 217
                tensor_shape = []
            else:
                tensor_shape = self._serial_tensor.shape
            tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
            self._dist_attr.dims_mapping = tensor_dims_mapping

    def validate_dist_attr(self):
Z
zhaoyingli 已提交
218
        if self.serial_tensor.type in __no_shape_var_type__:
219 220 221 222 223 224
            return True
        tensor_shape = self.serial_tensor.shape
        if len(tensor_shape) != len(self.dist_attr.dims_mapping):
            return False
        for i in range(len(self.dist_attr.dims_mapping)):
            if self.dist_attr.dims_mapping[
225 226 227 228
                i
            ] < -1 or self.dist_attr.dims_mapping[i] >= len(
                self.dist_attr.process_mesh.topology
            ):
229 230 231 232 233 234
                return False
        for i in range(len(self.dist_attr.process_mesh.topology)):
            if self.dist_attr.dims_mapping.count(i) > 1:
                return False
        return True

235
    def local_sizes(self, rank=None):
236
        """Get local sizes of the given rank."""
237
        rank = paddle.distributed.get_rank() if rank is None else rank
238 239 240 241 242
        global_sizes = self.serial_tensor.shape
        dims_mapping = self.dist_attr.dims_mapping
        shard_sizes = self.dist_attr.shard_sizes
        processes = self.dist_attr.process_mesh.processes
        topology = self.dist_attr.process_mesh.topology
243 244 245
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        return local_sizes

    def local_offsets(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_offsets = None
        if rank in self._local_offsets_map.keys():
            local_offsets = self._local_offsets_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_offsets = DistributedTensor.get_local_offsets(
261 262 263 264 265 266 267
                global_sizes,
                dims_mapping,
                topology,
                processes,
                rank,
                shard_sizes,
            )
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            self._local_offsets_map[rank] = local_offsets

        return local_offsets

    def global_sizes(self):
        return self.serial_tensor.shape

    def local_shard(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_shard = None
        if rank in self._local_shard_map.keys():
            local_shard = self._local_shard_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_shard = DistributedTensor.get_local_shard(
287 288 289 290 291 292 293
                global_sizes,
                dims_mapping,
                topology,
                processes,
                rank,
                shard_sizes,
            )
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            self._local_shard_map[rank] = local_shard

        return local_shard

    def new_local_tensor(self, block=None, rank=None, name=None):
        """
        Create a new local tensor of serial tensor corresponding to rank.
        Args:
            block (Block): The block contains the new tensor. Default value is recommend and it will be created in the block of dist main program corresponding to the serial tensor block id. Default: None.
            rank (int): The rank id. Default value is recommend and it will be the current rank. Default: None.
        """

        def _copy_kwargs(serial_tensor):
            kwargs = {}
            no_need_copy_args = ["self", "block", "shape", "name"]
            arg_spec = inspect.getargspec(Variable.__init__)

            for key in arg_spec.args:
                # TODO: Check the copied attribute from serial tensor whether valid
                if key in no_need_copy_args:
                    continue
                elif key not in kwargs:
                    if key == "type":
                        kwargs[key] = serial_tensor.desc.type()
                    elif key == "dtype":
                        kwargs[key] = serial_tensor.desc.dtype()
                    elif key == "lod_level":
                        kwargs[key] = serial_tensor.desc.lod_level()
                    elif key == "persistable":
                        kwargs[key] = serial_tensor.desc.persistable()
                    elif key == "stop_gradient":
                        kwargs[key] = serial_tensor.desc.stop_gradient()
                    elif key == "need_check_feed":
                        kwargs[key] = serial_tensor.desc.need_check_feed()
                    # TODO: Get capacity by framework
                    elif key == "capacity":
                        continue
                    else:
                        kwargs[key] = self.serial_tensor.__dict__[key]

            if isinstance(serial_tensor, Parameter):
                kwargs["trainable"] = serial_tensor.trainable
                kwargs["optimize_attr"] = serial_tensor.trainable
                kwargs["regularizer"] = serial_tensor.regularizer
                kwargs["do_model_average"] = serial_tensor.do_model_average
                kwargs["need_clip"] = serial_tensor.need_clip
                kwargs["is_distributed"] = serial_tensor.is_distributed
                kwargs["is_parameter"] = serial_tensor.is_parameter

            return kwargs

        if rank is not None and not (isinstance(rank, int) and rank >= 0):
            raise ValueError("The rank must >= 0, but got {}".format(rank))
        if block is not None and not isinstance(block, Block):
348 349 350
            raise TypeError(
                "The block must be Block, but got {}.".format(type(block))
            )
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        rank = paddle.distributed.get_rank() if rank is None else rank

        if block is None:
            block_id = self.serial_tensor.block.idx
            block = self.dist_context.dist_main_programs[rank].block(block_id)

        # copy serial tensor attribute
        kwargs = _copy_kwargs(self.serial_tensor)
        kwargs["name"] = name
        kwargs["shape"] = self.local_sizes(rank)

        if isinstance(self.serial_tensor, Parameter):
            kwargs.pop("persistable")
            local_tensor = Parameter(block=block, **kwargs)
        else:
            local_tensor = block.create_var(**kwargs)

        # TODO: Set original id when set original_id is approved
        local_tensor.desc.set_original_id(self.serial_tensor.desc.id())
        self._local_tensor_map[rank] = local_tensor
        return local_tensor

    def local_tensor(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
375 376 377
        assert (
            rank in self._local_tensor_map
        ), "The rank {} local tensor has not been created.".format(rank)
378 379
        return self._local_tensor_map[rank]

Z
zhaoyingli 已提交
380 381 382 383 384
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
385
            if k == "_serial_tensor" or k == "_local_tensor_map":
Z
zhaoyingli 已提交
386 387 388 389 390
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

391 392
    def __str__(self):
        str = "{{tensor name: {}, tensor id: {}".format(
393 394
            self.serial_tensor.desc.name(), self.serial_tensor.desc.id()
        )
395 396 397 398 399 400 401 402

        # str += ", {}".format(self.dist_attr)
        # return str

        if self.dist_attr.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
403 404 405
        str += ", process_mesh ({}): {}".format(
            annotated_str, self.dist_attr.process_mesh
        )
406 407 408 409 410 411 412

        str += ", is_parameter: {}".format(self.serial_tensor.is_parameter)

        if self.dist_attr.is_annotated("dims_mapping"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
413 414 415
        str += ", dims_mapping ({}): {}".format(
            annotated_str, self.dist_attr.dims_mapping
        )
416 417 418 419 420 421 422 423 424 425 426 427 428

        if self.dist_attr.is_annotated("shard_mask"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", shard_mask ({}): {}".format(annotated_str, None)

        if self.dist_attr.is_annotated("offload_device"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", offload_device ({}): {} }}".format(annotated_str, None)
        return str