dist_tensor.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
16 17 18
import inspect

import paddle
19
from paddle.fluid import core
20
from paddle.fluid.framework import Parameter, Block, Variable
21 22
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import get_tensor_dist_attr_field_keys
23
from .utils import _linear_idx2coordinate
24 25 26


class DistributedTensor:
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    """
    DistributedTensor represents the distribution of tensor on the process group and 
    local tensors can be created by DistributedTensor.
    Only support even sharding now and uneven sharding will be supported in the future.
    Local tensor information can be obtained from the DistributedTensor instance object, 
    or obtained by the static methods provided by DistributedTensor, 
    including shard (i.e. the index in the serial tensor), offsets, and sizes.
    """

    @staticmethod
    def _validate_sizes_and_dist_attr(sizes,
                                      dims_mapping,
                                      topology,
                                      processes,
                                      rank=None,
                                      shard_sizes=None):
        if not (isinstance(sizes, (list, tuple)) and
                all(map(lambda x: isinstance(x, int) and x > 0, sizes))):
            raise ValueError(
                "The sizes must be list or tuple and item in sizes must be non-negative integer, but got {}".
                format(sizes))
        if not (isinstance(dims_mapping, (list, tuple)) and all(
                map(lambda x: isinstance(x, int) and x >= -1, dims_mapping))):
            raise ValueError(
                "The dims_mapping must be list or tuple and item in dims_mapping must >= -1, but got {}".
                format(dims_mapping))
        if not (isinstance(processes, (list, tuple)) and
                all(map(lambda x: isinstance(x, int) and x >= 0, processes))):
            raise ValueError(
                "The processes must be list or tuple and item in processes must be integer, but got {}".
                format(processes))
        if not (isinstance(topology, (list, tuple)) and
                all(map(lambda x: isinstance(x, int) and x > 0, topology))):
            raise ValueError(
                "The topology must be list or tuple and item in topology must be non-negative integer, but got {}".
                format(topology))
        if rank is not None and not (isinstance(rank, int) and rank >= 0):
            raise ValueError("The rank must >= 0, but got {}".format(rank))

        # NOTE: Only support even sharding now
        if shard_sizes is not None:
            raise ValueError("Only support even sharding now.")

    @staticmethod
    def get_local_sizes(global_sizes,
                        dims_mapping,
                        topology,
                        processes,
                        rank=None,
                        shard_sizes=None):
        DistributedTensor._validate_sizes_and_dist_attr(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes)

        local_sizes = []
        # for even sharding, the local sizes of every rank are equal
        for idx, item in enumerate(global_sizes):
            if dims_mapping[idx] == -1:
                local_sizes.append(item)
            else:
                local_sizes.append(item // topology[dims_mapping[idx]])

        return local_sizes

    @staticmethod
    def get_local_offsets(global_sizes,
                          dims_mapping,
                          topology,
                          processes,
                          rank,
                          shard_sizes=None):
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes)
        local_offsets = []
        rank_relatvie = processes.index(rank)
        coordinate = _linear_idx2coordinate(topology, rank_relatvie)

        for i in range(len(global_sizes)):
            if dims_mapping[i] == -1:
                local_offsets.append(0)
            else:
                local_offsets.append(coordinate[dims_mapping[i]] *
                                     local_sizes[i])
        return local_offsets

    @staticmethod
    def get_global_sizes(local_sizes,
                         dims_mapping,
                         topology,
                         processes,
                         rank=None,
                         shard_sizes=None):
        DistributedTensor._validate_sizes_and_dist_attr(
            local_sizes, dims_mapping, topology, processes, rank, shard_sizes)
        global_sizes = []
        for idx, item in enumerate(local_sizes):
            if dims_mapping[idx] == -1:
                global_sizes.append(item)
            else:
                global_sizes.append(item * topology[dims_mapping[idx]])
        return global_sizes

    @staticmethod
    def get_local_shard(global_sizes,
                        dims_mapping,
                        topology,
                        processes,
                        rank,
                        shard_sizes=None):
        local_offsets = DistributedTensor.get_local_offsets(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes)
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes)
        assert len(local_sizes) == len(
            local_offsets
        ), "The length of local_sizes must be equal to local_offsets, but got {} and {}.".format(
            len(local_sizes), len(local_offsets))

        local_end_offsets = list(
            map(lambda x: x[0] + x[1], zip(local_offsets, local_sizes)))
        local_shard = list(zip(local_offsets, local_end_offsets))
        return local_shard

    def __init__(self, serial_tensor, dist_attr=None, dist_context=None):
150 151 152 153 154
        self._serial_tensor = serial_tensor
        self._dist_attr = None
        self._batch_dim = 0
        # Reuse the dist_attr setter to initialize _dist_attr
        self.dist_attr = dist_attr
155 156 157 158 159 160 161 162 163 164
        self._local_sizes_map = {}
        self._local_offsets_map = {}
        self._local_shard_map = {}
        self._local_tensor_map = {}

        from .dist_context import get_default_distributed_context
        self._dist_context = dist_context if dist_context is not None else get_default_distributed_context(
        )
        # TODO: Add Automatically to dist_context after initialized and it will be adapted in the future.
        # self._dist_context.add_dist_tensor_for_program(self)
165 166 167 168 169 170 171 172 173

    @property
    def serial_tensor(self):
        return self._serial_tensor

    @property
    def dist_attr(self):
        return self._dist_attr

174 175 176 177
    @property
    def dist_context(self):
        return self._dist_context

178 179 180 181 182 183 184 185 186
    @dist_attr.setter
    def dist_attr(self, dist_attr):
        if self._dist_attr is None:
            self._dist_attr = TensorDistributedAttribute()
        self._dist_attr.init(dist_attr)
        self._init_default_dist_attr()

    def _init_default_dist_attr(self):
        if self._dist_attr.dims_mapping is None:
187 188 189
            if self.serial_tensor.type == core.VarDesc.VarType.READER \
                or self.serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or self.serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
190 191 192 193 194 195 196
                tensor_shape = []
            else:
                tensor_shape = self._serial_tensor.shape
            tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
            self._dist_attr.dims_mapping = tensor_dims_mapping

    def validate_dist_attr(self):
197 198 199
        if self.serial_tensor.type == core.VarDesc.VarType.READER \
            or self.serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            or self.serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
200 201 202 203 204 205 206 207 208 209 210 211 212 213
            return True
        tensor_shape = self.serial_tensor.shape
        if len(tensor_shape) != len(self.dist_attr.dims_mapping):
            return False
        for i in range(len(self.dist_attr.dims_mapping)):
            if self.dist_attr.dims_mapping[
                    i] < -1 or self.dist_attr.dims_mapping[i] >= len(
                        self.dist_attr.process_mesh.topology):
                return False
        for i in range(len(self.dist_attr.process_mesh.topology)):
            if self.dist_attr.dims_mapping.count(i) > 1:
                return False
        return True

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def local_sizes(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_sizes = None
        if rank in self._local_sizes_map.keys():
            local_sizes = self._local_sizes_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_sizes = DistributedTensor.get_local_sizes(
                global_sizes, dims_mapping, topology, processes, rank,
                shard_sizes)
            self._local_sizes_map[rank] = local_sizes

        return local_sizes

    def local_offsets(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_offsets = None
        if rank in self._local_offsets_map.keys():
            local_offsets = self._local_offsets_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_offsets = DistributedTensor.get_local_offsets(
                global_sizes, dims_mapping, topology, processes, rank,
                shard_sizes)
            self._local_offsets_map[rank] = local_offsets

        return local_offsets

    def global_sizes(self):
        return self.serial_tensor.shape

    def local_shard(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_shard = None
        if rank in self._local_shard_map.keys():
            local_shard = self._local_shard_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_shard = DistributedTensor.get_local_shard(
                global_sizes, dims_mapping, topology, processes, rank,
                shard_sizes)
            self._local_shard_map[rank] = local_shard

        return local_shard

    def new_local_tensor(self, block=None, rank=None, name=None):
        """
        Create a new local tensor of serial tensor corresponding to rank.

        Args:
            block (Block): The block contains the new tensor. Default value is recommend and it will be created in the block of dist main program corresponding to the serial tensor block id. Default: None.
            rank (int): The rank id. Default value is recommend and it will be the current rank. Default: None.
        """

        def _copy_kwargs(serial_tensor):
            kwargs = {}
            no_need_copy_args = ["self", "block", "shape", "name"]
            arg_spec = inspect.getargspec(Variable.__init__)

            for key in arg_spec.args:
                # TODO: Check the copied attribute from serial tensor whether valid
                if key in no_need_copy_args:
                    continue
                elif key not in kwargs:
                    if key == "type":
                        kwargs[key] = serial_tensor.desc.type()
                    elif key == "dtype":
                        kwargs[key] = serial_tensor.desc.dtype()
                    elif key == "lod_level":
                        kwargs[key] = serial_tensor.desc.lod_level()
                    elif key == "persistable":
                        kwargs[key] = serial_tensor.desc.persistable()
                    elif key == "stop_gradient":
                        kwargs[key] = serial_tensor.desc.stop_gradient()
                    elif key == "need_check_feed":
                        kwargs[key] = serial_tensor.desc.need_check_feed()
                    # TODO: Get capacity by framework
                    elif key == "capacity":
                        continue
                    else:
                        kwargs[key] = self.serial_tensor.__dict__[key]

            if isinstance(serial_tensor, Parameter):
                kwargs["trainable"] = serial_tensor.trainable
                kwargs["optimize_attr"] = serial_tensor.trainable
                kwargs["regularizer"] = serial_tensor.regularizer
                kwargs["do_model_average"] = serial_tensor.do_model_average
                kwargs["need_clip"] = serial_tensor.need_clip
                kwargs["is_distributed"] = serial_tensor.is_distributed
                kwargs["is_parameter"] = serial_tensor.is_parameter

            return kwargs

        if rank is not None and not (isinstance(rank, int) and rank >= 0):
            raise ValueError("The rank must >= 0, but got {}".format(rank))
        if block is not None and not isinstance(block, Block):
            raise TypeError("The block must be Block, but got {}.".format(
                type(block)))
        rank = paddle.distributed.get_rank() if rank is None else rank

        if block is None:
            block_id = self.serial_tensor.block.idx
            block = self.dist_context.dist_main_programs[rank].block(block_id)

        # copy serial tensor attribute
        kwargs = _copy_kwargs(self.serial_tensor)
        kwargs["name"] = name
        kwargs["shape"] = self.local_sizes(rank)

        if isinstance(self.serial_tensor, Parameter):
            kwargs.pop("persistable")
            local_tensor = Parameter(block=block, **kwargs)
        else:
            local_tensor = block.create_var(**kwargs)

        # TODO: Set original id when set original_id is approved
        local_tensor.desc.set_original_id(self.serial_tensor.desc.id())
        self._local_tensor_map[rank] = local_tensor
        return local_tensor

    def local_tensor(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        assert rank in self._local_tensor_map, "The rank {} local tensor has not been created.".format(
            rank)
        return self._local_tensor_map[rank]

Z
zhaoyingli 已提交
352 353 354 355 356
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
357
            if k == "_serial_tensor" or k == "_local_tensor_map":
Z
zhaoyingli 已提交
358 359 360 361 362
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    def __str__(self):
        str = "{{tensor name: {}, tensor id: {}".format(
            self.serial_tensor.desc.name(), self.serial_tensor.desc.id())

        # str += ", {}".format(self.dist_attr)
        # return str

        if self.dist_attr.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", process_mesh ({}): {}".format(annotated_str,
                                                self.dist_attr.process_mesh)

        str += ", is_parameter: {}".format(self.serial_tensor.is_parameter)

        if self.dist_attr.is_annotated("dims_mapping"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", dims_mapping ({}): {}".format(annotated_str,
                                                self.dist_attr.dims_mapping)

        if self.dist_attr.is_annotated("shard_mask"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", shard_mask ({}): {}".format(annotated_str, None)

        if self.dist_attr.is_annotated("offload_device"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", offload_device ({}): {} }}".format(annotated_str, None)
        return str