dist_tensor.py 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
16 17 18
import inspect

import paddle
19
from paddle.fluid import core
20
from paddle.fluid.framework import Parameter, Block, Variable
21
from .dist_attribute import TensorDistributedAttribute
22
from .utils import _linear_idx2coordinate
23 24 25


class DistributedTensor:
26
    """
27
    DistributedTensor represents the distribution of tensor on the process group and
28 29
    local tensors can be created by DistributedTensor.
    Only support even sharding now and uneven sharding will be supported in the future.
30 31
    Local tensor information can be obtained from the DistributedTensor instance object,
    or obtained by the static methods provided by DistributedTensor,
32 33 34 35
    including shard (i.e. the index in the serial tensor), offsets, and sizes.
    """

    @staticmethod
36 37 38 39 40 41 42
    def _validate_sizes_and_dist_attr(
        sizes, dims_mapping, topology, processes, rank=None, shard_sizes=None
    ):
        if not (
            isinstance(sizes, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x >= 0, sizes))
        ):
43
            raise ValueError(
44 45 46 47 48 49 50 51
                "The sizes must be list or tuple and item in sizes must be non-negative integer, but got {}".format(
                    sizes
                )
            )
        if not (
            isinstance(dims_mapping, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x >= -1, dims_mapping))
        ):
52
            raise ValueError(
53 54 55 56 57 58 59 60
                "The dims_mapping must be list or tuple and item in dims_mapping must >= -1, but got {}".format(
                    dims_mapping
                )
            )
        if not (
            isinstance(processes, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x >= 0, processes))
        ):
61
            raise ValueError(
62 63 64 65 66 67 68 69
                "The processes must be list or tuple and item in processes must be integer, but got {}".format(
                    processes
                )
            )
        if not (
            isinstance(topology, (list, tuple))
            and all(map(lambda x: isinstance(x, int) and x > 0, topology))
        ):
70
            raise ValueError(
71 72 73 74
                "The topology must be list or tuple and item in topology must be non-negative integer, but got {}".format(
                    topology
                )
            )
75 76 77 78 79 80 81 82
        if rank is not None and not (isinstance(rank, int) and rank >= 0):
            raise ValueError("The rank must >= 0, but got {}".format(rank))

        # NOTE: Only support even sharding now
        if shard_sizes is not None:
            raise ValueError("Only support even sharding now.")

    @staticmethod
83 84 85 86 87 88 89 90 91 92 93
    def get_local_sizes(
        global_sizes,
        dims_mapping,
        topology,
        processes,
        rank=None,
        shard_sizes=None,
    ):
        DistributedTensor._validate_sizes_and_dist_attr(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
94 95 96

        local_sizes = []
        # for even sharding, the local sizes of every rank are equal
97

98
        for idx, item in enumerate(global_sizes):
99 100 101
            # This is a trick to avoid dims_mapping is []
            val = dims_mapping[idx] if idx < len(dims_mapping) else -1
            if val == -1:
102 103 104 105 106 107 108
                local_sizes.append(item)
            else:
                local_sizes.append(item // topology[dims_mapping[idx]])

        return local_sizes

    @staticmethod
109 110 111 112 113 114
    def get_local_offsets(
        global_sizes, dims_mapping, topology, processes, rank, shard_sizes=None
    ):
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
115 116 117 118 119 120 121 122
        local_offsets = []
        rank_relatvie = processes.index(rank)
        coordinate = _linear_idx2coordinate(topology, rank_relatvie)

        for i in range(len(global_sizes)):
            if dims_mapping[i] == -1:
                local_offsets.append(0)
            else:
123 124 125
                local_offsets.append(
                    coordinate[dims_mapping[i]] * local_sizes[i]
                )
126 127 128
        return local_offsets

    @staticmethod
129 130 131 132 133 134 135 136 137 138 139
    def get_global_sizes(
        local_sizes,
        dims_mapping,
        topology,
        processes,
        rank=None,
        shard_sizes=None,
    ):
        DistributedTensor._validate_sizes_and_dist_attr(
            local_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
140 141 142 143 144 145 146 147 148
        global_sizes = []
        for idx, item in enumerate(local_sizes):
            if dims_mapping[idx] == -1:
                global_sizes.append(item)
            else:
                global_sizes.append(item * topology[dims_mapping[idx]])
        return global_sizes

    @staticmethod
149 150 151
    def get_local_shard(
        global_sizes, dims_mapping, topology, processes, rank, shard_sizes=None
    ):
152
        local_offsets = DistributedTensor.get_local_offsets(
153 154 155 156 157
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
158 159 160
        assert len(local_sizes) == len(
            local_offsets
        ), "The length of local_sizes must be equal to local_offsets, but got {} and {}.".format(
161 162
            len(local_sizes), len(local_offsets)
        )
163 164

        local_end_offsets = list(
165 166
            map(lambda x: x[0] + x[1], zip(local_offsets, local_sizes))
        )
167 168 169 170
        local_shard = list(zip(local_offsets, local_end_offsets))
        return local_shard

    def __init__(self, serial_tensor, dist_attr=None, dist_context=None):
171 172 173 174 175
        self._serial_tensor = serial_tensor
        self._dist_attr = None
        self._batch_dim = 0
        # Reuse the dist_attr setter to initialize _dist_attr
        self.dist_attr = dist_attr
176 177 178 179 180
        self._local_offsets_map = {}
        self._local_shard_map = {}
        self._local_tensor_map = {}

        from .dist_context import get_default_distributed_context
181 182 183 184 185

        self._dist_context = (
            dist_context
            if dist_context is not None
            else get_default_distributed_context()
186 187 188
        )
        # TODO: Add Automatically to dist_context after initialized and it will be adapted in the future.
        # self._dist_context.add_dist_tensor_for_program(self)
189 190 191 192 193 194 195 196 197

    @property
    def serial_tensor(self):
        return self._serial_tensor

    @property
    def dist_attr(self):
        return self._dist_attr

198 199 200 201
    @property
    def dist_context(self):
        return self._dist_context

202 203 204 205 206 207 208 209 210
    @dist_attr.setter
    def dist_attr(self, dist_attr):
        if self._dist_attr is None:
            self._dist_attr = TensorDistributedAttribute()
        self._dist_attr.init(dist_attr)
        self._init_default_dist_attr()

    def _init_default_dist_attr(self):
        if self._dist_attr.dims_mapping is None:
211 212 213 214 215 216
            if (
                self.serial_tensor.type == core.VarDesc.VarType.READER
                or self.serial_tensor.type
                == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                or self.serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES
            ):
217 218 219 220 221 222 223
                tensor_shape = []
            else:
                tensor_shape = self._serial_tensor.shape
            tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
            self._dist_attr.dims_mapping = tensor_dims_mapping

    def validate_dist_attr(self):
224 225 226 227 228
        if (
            self.serial_tensor.type == core.VarDesc.VarType.READER
            or self.serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            or self.serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES
        ):
229 230 231 232 233 234
            return True
        tensor_shape = self.serial_tensor.shape
        if len(tensor_shape) != len(self.dist_attr.dims_mapping):
            return False
        for i in range(len(self.dist_attr.dims_mapping)):
            if self.dist_attr.dims_mapping[
235 236 237 238
                i
            ] < -1 or self.dist_attr.dims_mapping[i] >= len(
                self.dist_attr.process_mesh.topology
            ):
239 240 241 242 243 244
                return False
        for i in range(len(self.dist_attr.process_mesh.topology)):
            if self.dist_attr.dims_mapping.count(i) > 1:
                return False
        return True

245
    def local_sizes(self, rank=None):
246
        """Get local sizes of the given rank."""
247
        rank = paddle.distributed.get_rank() if rank is None else rank
248 249 250 251 252
        global_sizes = self.serial_tensor.shape
        dims_mapping = self.dist_attr.dims_mapping
        shard_sizes = self.dist_attr.shard_sizes
        processes = self.dist_attr.process_mesh.processes
        topology = self.dist_attr.process_mesh.topology
253 254 255
        local_sizes = DistributedTensor.get_local_sizes(
            global_sizes, dims_mapping, topology, processes, rank, shard_sizes
        )
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        return local_sizes

    def local_offsets(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_offsets = None
        if rank in self._local_offsets_map.keys():
            local_offsets = self._local_offsets_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_offsets = DistributedTensor.get_local_offsets(
271 272 273 274 275 276 277
                global_sizes,
                dims_mapping,
                topology,
                processes,
                rank,
                shard_sizes,
            )
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            self._local_offsets_map[rank] = local_offsets

        return local_offsets

    def global_sizes(self):
        return self.serial_tensor.shape

    def local_shard(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
        local_shard = None
        if rank in self._local_shard_map.keys():
            local_shard = self._local_shard_map[rank]
        else:
            global_sizes = self.serial_tensor.shape
            dims_mapping = self.dist_attr.dims_mapping
            shard_sizes = self.dist_attr.shard_sizes
            processes = self.dist_attr.process_mesh.processes
            topology = self.dist_attr.process_mesh.topology
            local_shard = DistributedTensor.get_local_shard(
297 298 299 300 301 302 303
                global_sizes,
                dims_mapping,
                topology,
                processes,
                rank,
                shard_sizes,
            )
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            self._local_shard_map[rank] = local_shard

        return local_shard

    def new_local_tensor(self, block=None, rank=None, name=None):
        """
        Create a new local tensor of serial tensor corresponding to rank.
        Args:
            block (Block): The block contains the new tensor. Default value is recommend and it will be created in the block of dist main program corresponding to the serial tensor block id. Default: None.
            rank (int): The rank id. Default value is recommend and it will be the current rank. Default: None.
        """

        def _copy_kwargs(serial_tensor):
            kwargs = {}
            no_need_copy_args = ["self", "block", "shape", "name"]
            arg_spec = inspect.getargspec(Variable.__init__)

            for key in arg_spec.args:
                # TODO: Check the copied attribute from serial tensor whether valid
                if key in no_need_copy_args:
                    continue
                elif key not in kwargs:
                    if key == "type":
                        kwargs[key] = serial_tensor.desc.type()
                    elif key == "dtype":
                        kwargs[key] = serial_tensor.desc.dtype()
                    elif key == "lod_level":
                        kwargs[key] = serial_tensor.desc.lod_level()
                    elif key == "persistable":
                        kwargs[key] = serial_tensor.desc.persistable()
                    elif key == "stop_gradient":
                        kwargs[key] = serial_tensor.desc.stop_gradient()
                    elif key == "need_check_feed":
                        kwargs[key] = serial_tensor.desc.need_check_feed()
                    # TODO: Get capacity by framework
                    elif key == "capacity":
                        continue
                    else:
                        kwargs[key] = self.serial_tensor.__dict__[key]

            if isinstance(serial_tensor, Parameter):
                kwargs["trainable"] = serial_tensor.trainable
                kwargs["optimize_attr"] = serial_tensor.trainable
                kwargs["regularizer"] = serial_tensor.regularizer
                kwargs["do_model_average"] = serial_tensor.do_model_average
                kwargs["need_clip"] = serial_tensor.need_clip
                kwargs["is_distributed"] = serial_tensor.is_distributed
                kwargs["is_parameter"] = serial_tensor.is_parameter

            return kwargs

        if rank is not None and not (isinstance(rank, int) and rank >= 0):
            raise ValueError("The rank must >= 0, but got {}".format(rank))
        if block is not None and not isinstance(block, Block):
358 359 360
            raise TypeError(
                "The block must be Block, but got {}.".format(type(block))
            )
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        rank = paddle.distributed.get_rank() if rank is None else rank

        if block is None:
            block_id = self.serial_tensor.block.idx
            block = self.dist_context.dist_main_programs[rank].block(block_id)

        # copy serial tensor attribute
        kwargs = _copy_kwargs(self.serial_tensor)
        kwargs["name"] = name
        kwargs["shape"] = self.local_sizes(rank)

        if isinstance(self.serial_tensor, Parameter):
            kwargs.pop("persistable")
            local_tensor = Parameter(block=block, **kwargs)
        else:
            local_tensor = block.create_var(**kwargs)

        # TODO: Set original id when set original_id is approved
        local_tensor.desc.set_original_id(self.serial_tensor.desc.id())
        self._local_tensor_map[rank] = local_tensor
        return local_tensor

    def local_tensor(self, rank=None):
        rank = paddle.distributed.get_rank() if rank is None else rank
385 386 387
        assert (
            rank in self._local_tensor_map
        ), "The rank {} local tensor has not been created.".format(rank)
388 389
        return self._local_tensor_map[rank]

Z
zhaoyingli 已提交
390 391 392 393 394
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
395
            if k == "_serial_tensor" or k == "_local_tensor_map":
Z
zhaoyingli 已提交
396 397 398 399 400
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

401 402
    def __str__(self):
        str = "{{tensor name: {}, tensor id: {}".format(
403 404
            self.serial_tensor.desc.name(), self.serial_tensor.desc.id()
        )
405 406 407 408 409 410 411 412

        # str += ", {}".format(self.dist_attr)
        # return str

        if self.dist_attr.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
413 414 415
        str += ", process_mesh ({}): {}".format(
            annotated_str, self.dist_attr.process_mesh
        )
416 417 418 419 420 421 422

        str += ", is_parameter: {}".format(self.serial_tensor.is_parameter)

        if self.dist_attr.is_annotated("dims_mapping"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
423 424 425
        str += ", dims_mapping ({}): {}".format(
            annotated_str, self.dist_attr.dims_mapping
        )
426 427 428 429 430 431 432 433 434 435 436 437 438

        if self.dist_attr.is_annotated("shard_mask"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", shard_mask ({}): {}".format(annotated_str, None)

        if self.dist_attr.is_annotated("offload_device"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", offload_device ({}): {} }}".format(annotated_str, None)
        return str