dist_tensor.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from paddle.fluid import core
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import get_tensor_dist_attr_field_keys


class DistributedTensor:
    def __init__(self, serial_tensor, dist_attr=None):
        self._serial_tensor = serial_tensor
        self._dist_attr = None
        self._batch_dim = 0
        # Reuse the dist_attr setter to initialize _dist_attr
        self.dist_attr = dist_attr

    @property
    def serial_tensor(self):
        return self._serial_tensor

    @property
    def dist_attr(self):
        return self._dist_attr

    @dist_attr.setter
    def dist_attr(self, dist_attr):
        if self._dist_attr is None:
            self._dist_attr = TensorDistributedAttribute()
        self._dist_attr.init(dist_attr)
        self._init_default_dist_attr()

    def _init_default_dist_attr(self):
        if self._dist_attr.dims_mapping is None:
            if self.serial_tensor.type == core.VarDesc.VarType.READER:
                tensor_shape = []
            else:
                tensor_shape = self._serial_tensor.shape
            tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
            self._dist_attr.dims_mapping = tensor_dims_mapping

    def validate_dist_attr(self):
        if self.serial_tensor.type == core.VarDesc.VarType.READER:
            return True
        tensor_shape = self.serial_tensor.shape
        if len(tensor_shape) != len(self.dist_attr.dims_mapping):
            return False
        for i in range(len(self.dist_attr.dims_mapping)):
            if self.dist_attr.dims_mapping[
                    i] < -1 or self.dist_attr.dims_mapping[i] >= len(
                        self.dist_attr.process_mesh.topology):
                return False
        for i in range(len(self.dist_attr.process_mesh.topology)):
            if self.dist_attr.dims_mapping.count(i) > 1:
                return False
        return True

Z
zhaoyingli 已提交
69 70 71 72 73 74 75 76 77 78 79
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            if k == "_serial_tensor":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def __str__(self):
        str = "{{tensor name: {}, tensor id: {}".format(
            self.serial_tensor.desc.name(), self.serial_tensor.desc.id())

        # str += ", {}".format(self.dist_attr)
        # return str

        if self.dist_attr.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", process_mesh ({}): {}".format(annotated_str,
                                                self.dist_attr.process_mesh)

        str += ", is_parameter: {}".format(self.serial_tensor.is_parameter)

        if self.dist_attr.is_annotated("dims_mapping"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", dims_mapping ({}): {}".format(annotated_str,
                                                self.dist_attr.dims_mapping)

        if self.dist_attr.is_annotated("shard_mask"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", shard_mask ({}): {}".format(annotated_str, None)

        if self.dist_attr.is_annotated("offload_device"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", offload_device ({}): {} }}".format(annotated_str, None)
        return str