varbase_patch_methods.py 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
23
from ..framework import convert_np_dtype_to_dtype_, _in_legacy_dygraph
24
from .. import core
25
from .. import unique_name
26
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, EagerParamBase, in_dygraph_mode
27
from .base import switch_to_static_graph
28
from .math_op_patch import monkey_patch_math_varbase
29
from .parallel import scale_loss
L
Leo Chen 已提交
30
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
31
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
32
import paddle.profiler as profiler
33
from paddle.profiler.utils import in_profiler_mode
H
hong 已提交
34
from paddle import _C_ops
35

36 37
_grad_scalar = None

38

39 40 41
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
42
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
43 44 45
    """

    def __init__(self, tensor, hook_id):
J
Jiabin Yang 已提交
46 47
        self._tensor = tensor if framework._in_eager_mode_ else weakref.ref(
            tensor)
48 49 50 51 52 53 54 55 56
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
J
Jiabin Yang 已提交
57
        tensor = self._tensor if framework._in_eager_mode_ else self._tensor()
58 59 60 61 62 63 64 65 66 67 68
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


69 70 71
_already_patch_repr = False


72
def monkey_patch_varbase():
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
100

101
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
102
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
103
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
J
Jiabin Yang 已提交
104
        if isinstance(self, (ParamBase, EagerParamBase)):
105 106
            attr_kwargs = self.__dict__.copy()
        else:
107 108
            attr_names = []
            for name in dir(self):
109 110 111 112
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
113 114 115 116 117 118 119 120
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
121
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
122
            del attr_kwargs['persistable']
123 124
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
125 126 127 128 129
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

130 131 132 133 134
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
135
            **This API is ONLY available in Dygraph mode**
136 137 138 139 140 141 142 143 144 145 146

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
147
                from paddle.fluid.dygraph import Linear
148 149
                import numpy as np

150
                data = np.ones([3, 1024], dtype='float32')
151
                with fluid.dygraph.guard():
152
                    linear = fluid.dygraph.Linear(1024, 4)
153
                    t = to_variable(data)
154
                    linear(t)  # call with default weight
155
                    custom_weight = np.random.randn(1024, 4).astype("float32")
156 157
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
158 159

        """
J
Jiabin Yang 已提交
160
        if framework._in_eager_mode_:
161
            base_tensor = core.eager.Tensor
162 163 164
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
S
Steffy-zxf 已提交
165 166 167 168 169 170 171 172 173 174 175 176
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
C
crystal 已提交
177
            assert self.shape == list(value.shape),  \
S
Steffy-zxf 已提交
178
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
C
crystal 已提交
179 180 181 182 183 184
                    self.name, self.shape, value.shape)

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
185

C
crystal 已提交
186
            assert self.dtype == dtype, \
S
Steffy-zxf 已提交
187
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
C
crystal 已提交
188
                    self.name, self.dtype, dtype)
189

190
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
191
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
192
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
193
            # this Interface behavior will be unifed in the future.
C
crystal 已提交
194
            self.value().get_tensor().set(value,
S
Steffy-zxf 已提交
195
                                          framework._current_expected_place())
196 197

    @framework.dygraph_only
198
    def backward(self, grad_tensor=None, retain_graph=False):
199
        """
200
        Run backward of current Graph which starts from current Tensor.
201

202 203 204 205
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

206
        Args:
C
chenjian 已提交
207 208
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
209 210 211
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

212
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
213 214 215
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
216 217 218 219 220 221
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

222
                import paddle
223 224 225 226 227 228 229 230 231 232 233 234 235 236
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
237

238 239 240 241 242 243 244 245 246 247 248
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

249
        """
J
Jiabin Yang 已提交
250
        if framework._non_static_mode():
251 252 253 254
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
                    "Gradient Backward", profiler.TracerEventType.Backward)
                record_event.begin()
255
            if grad_tensor is not None:
J
Jiabin Yang 已提交
256
                if framework._in_eager_mode_:
257
                    assert isinstance(
258 259
                        grad_tensor, core.eager.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
260 261 262 263
                else:
                    assert isinstance(
                        grad_tensor, paddle.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
264 265 266 267
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

J
Jiabin Yang 已提交
268
            if framework._in_eager_mode_:
269 270 271 272
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
273 274 275
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
K
kuizhiqing 已提交
276
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu():
277
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
278
                scaled_loss = scale_loss(self)
J
Jiabin Yang 已提交
279
                if framework._in_eager_mode_:
280 281 282 283 284 285
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
286
            else:
J
Jiabin Yang 已提交
287
                if framework._in_eager_mode_:
288 289 290 291 292
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
293 294
            if in_profiler_mode():
                record_event.end()
295 296
        else:
            raise ValueError(
T
tianshuo78520a 已提交
297
                "Variable.backward() is only available in DyGraph mode")
298 299

    @framework.dygraph_only
300 301
    @deprecated(
        since="2.1.0",
302 303
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
304
    )
305 306
    def gradient(self):
        """
307 308 309 310
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

311
        Get the Gradient of Current Tensor.
312 313

        Returns:
314
            ndarray: Numpy value of the gradient of current Tensor
315 316 317 318

        Examples:
            .. code-block:: python

319
                import paddle
320

321 322 323
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
324
                print("grad of x: {}".format(x.gradient()))
325
                # [500.]
326 327

        """
J
Jiabin Yang 已提交
328
        if framework._in_eager_mode_:
329
            if self.grad is None:
330
                return None
331 332
            if self.grad.is_selected_rows():
                return (np.array(self.grad.numpy()), np.array(self.grad.rows()))
333 334 335 336
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
337

338 339 340 341
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
342
                    np.array(new_ivar.value().get_selected_rows().rows()))
343 344
            else:
                return np.array(new_ivar.value().get_tensor())
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
442 443
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
444 445 446

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
447
                size_dtype = core.size_of_dtype(dtype)
448 449 450 451 452
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
453
                gpu_memory_available = core.gpu_memory_available()
454 455 456 457 458 459 460 461 462 463 464 465 466
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
467 468 469
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
470 471 472 473
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
474 475 476 477
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
478 479 480 481 482 483 484 485 486 487 488 489

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

490 491 492
    @property
    def grad(self):
        """
493
        .. warning::
C
chenjian 已提交
494
          This API will return the tensor value of the gradient. If you want
495 496 497 498 499 500 501 502 503 504 505
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
506

507 508 509 510 511 512 513
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
514 515 516 517
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
518
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
519 520 521
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
522
        warnings.warn(warning_msg)
523
        return self._grad_ivar()
524

525 526 527 528 529 530
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

531 532
    def item(self, *args):
        """
C
chenjian 已提交
533
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
534
        single-element Tensor.
535 536 537 538 539 540 541 542 543

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

594 595
    def __str__(self):
        """
596
        Convert a VarBase object to a readable string.
597

598
        Returns(str): A readable string.
599 600 601 602

        Examples:
            .. code-block:: python

603
                import paddle
604
                x = paddle.rand([2, 5])
605
                print(x)
C
chenjian 已提交
606

607 608 609
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
610
        """
J
Jiabin Yang 已提交
611
        if framework._in_eager_mode_:
612 613
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
614 615 616
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
617

618 619 620 621 622 623 624 625 626 627 628
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
629

630 631 632 633 634 635 636 637 638 639 640 641 642
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
J
Jiabin Yang 已提交
643
        if framework._in_eager_mode_:
644
            new_varbase = core.eager.Tensor()
645 646
        else:
            new_varbase = core.VarBase()
647 648 649 650 651
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

652 653 654
    @property
    def block(self):
        return framework.default_main_program().global_block()
655

656 657 658
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
J
Jiabin Yang 已提交
659
        if framework._in_eager_mode_:
660 661 662 663 664 665
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
666 667 668 669

    def __bool__(self):
        return self.__nonzero__()

670
    def __array__(self, dtype=None):
671 672
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
695

W
WeiXin 已提交
696
    def contain_tensor(item):
697
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
698 699 700 701 702 703 704 705 706
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
707 708 709
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
710 711 712
                    return True
        return False

713
    def __getitem__(self, item):
W
WeiXin 已提交
714 715 716 717 718 719
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
720 721 722
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
723
                return True
724

W
WeiXin 已提交
725 726 727 728 729 730 731 732
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
733 734 735 736 737 738 739 740
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
741
    def __setitem__(self, item, value):
Z
zyfncg 已提交
742 743 744
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
745

Z
zyfncg 已提交
746 747 748 749 750 751 752 753
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
776 777
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
778 779 780
            return _setitem_impl_(self, item, value)

        else:
J
Jiabin Yang 已提交
781
            if framework._in_eager_mode_:
W
wanghuancoder 已提交
782 783 784 785
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
786

787 788
    @framework.dygraph_only
    def _grad_ivar(self):
789 790 791 792
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
793

794 795 796 797 798 799 800 801 802 803
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

    @framework.dygraph_only
    def clone(self):
804 805 806
        if in_dygraph_mode():
            return _C_ops.final_state_assign(self)

807 808 809 810 811
        if _in_legacy_dygraph():
            output = core.VarBase()
        else:
            output = core.eager.Tensor()
        return _C_ops.assign(self, output)
812

813 814 815 816
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
817 818 819 820 821 822 823 824
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

825 826 827 828
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

829 830
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
846 847
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
848 849 850 851 852 853 854 855 856 857 858
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
859 860 861 862 863
    def cuda(self, device_id=0, blocking=True):
        if device_id is None:
            device_id = 0
        if not isinstance(device_id, int):
            raise ValueError("\'device_id\' must be a positive integer")
J
Jiabin Yang 已提交
864 865 866 867 868 869 870 871
        if self.place.is_gpu_place():
            return self
        else:
            res = self._copy_to(core.CUDAPlace(device_id), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
872 873 874 875 876 877 878 879 880 881
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    @framework.dygraph_only
    def values(self):
        if self.is_sparse_coo():
            return _C_ops.final_state_sparse_coo_values(self)
        elif self.is_sparse_csr():
            return _C_ops.final_state_sparse_csr_values(self)
        else:
            raise ValueError(
                "only SparseCooTensor and SparseCsrTensor have method values")

    @framework.dygraph_only
    def to_dense(self):
        if self.is_sparse_coo():
            return _C_ops.final_state_sparse_coo_to_dense(self)
        elif self.is_sparse_csr():
            return _C_ops.final_state_sparse_to_dense(self)
        else:
            return self

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
        if self.is_sparse_csr():
            return _C_ops.final_state_sparse_to_sparse_coo(self, sparse_dim)
        elif self.is_sparse_coo():
            return self
        elif self.is_selected_rows():
            raise ValueError(
                "SelectedRows does not support to_sparse_coo method")
        else:
            #is dense tensor
            return _C_ops.final_state_sparse_dense_to_coo(self, sparse_dim)

J
Jiabin Yang 已提交
914
    if framework._in_eager_mode_ and not hasattr(core, "eager"):
915 916
        return

917 918
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
919
        ("_to_static_var", _to_static_var), ("set_value", set_value),
920
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
921 922 923 924
        ("inplace_version", inplace_version), ("gradient", gradient),
        ("register_hook", register_hook), ("__str__", __str__),
        ("__repr__", __str__), ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"), ("__array__", __array__),
W
WeiXin 已提交
925
        ("__getitem__", __getitem__), ("item", item),
926 927
        ("__setitem__", __setitem__), ("_to", _to), ("values", values),
        ("to_dense", to_dense), ("to_sparse_coo", to_sparse_coo)):
J
Jiabin Yang 已提交
928
        if framework._in_eager_mode_:
929
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
930
        else:
931 932
            setattr(core.VarBase, method_name, method)

J
Jiabin Yang 已提交
933
    if framework._in_eager_mode_:
934 935 936 937
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "clone", clone)
        setattr(core.eager.Tensor, "value", value)
J
Jiabin Yang 已提交
938 939
        setattr(core.eager.Tensor, "cpu", cpu)
        setattr(core.eager.Tensor, "cuda", cuda)
W
wanghuancoder 已提交
940
        setattr(core.eager.Tensor, "pin_memory", pin_memory)
J
Jiabin Yang 已提交
941 942
        setattr(core.eager.Tensor, "_slice", _slice)
        setattr(core.eager.Tensor, "_numel", _numel)
943
        setattr(core.eager.Tensor, "_uva", _uva)
944
        setattr(core.eager.Tensor, "_clear_data", _clear_data)
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
                prefix = 'paddle.'
                return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
963

964 965
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
966

967 968
    # patch math methods for varbase
    monkey_patch_math_varbase()