test_multiclass_nms_op.py 24.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14

15 16 17
import unittest
import numpy as np
import copy
18
from op_test import OpTest
19
import paddle
X
xiaoting 已提交
20
import paddle.fluid as fluid
21 22
from paddle.fluid import Program, program_guard, in_dygraph_mode, _non_static_mode
from paddle.fluid.layer_helper import LayerHelper
23
from paddle import _C_ops, _legacy_C_ops
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


def multiclass_nms3(bboxes,
                    scores,
                    rois_num=None,
                    score_threshold=0.3,
                    nms_top_k=1000,
                    keep_top_k=100,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=-1,
                    return_index=True,
                    return_rois_num=True,
                    name=None):

    helper = LayerHelper('multiclass_nms3', **locals())

    if in_dygraph_mode():
        attrs = (score_threshold, nms_top_k, keep_top_k, nms_threshold,
                 normalized, nms_eta, background_label)
45
        output, index, nms_rois_num = _C_ops.multiclass_nms3(
46 47 48 49 50 51 52 53 54
            bboxes, scores, rois_num, *attrs)
        if not return_index:
            index = None
        return output, index, nms_rois_num
    elif _non_static_mode():
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
                 nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
                 'normalized', normalized)
55
        output, index, nms_rois_num = _legacy_C_ops.multiclass_nms3(
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            bboxes, scores, rois_num, *attrs)
        if not return_index:
            index = None
        return output, index, nms_rois_num

    else:
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'BBoxes': bboxes, 'Scores': scores}
        outputs = {'Out': output, 'Index': index}

        if rois_num is not None:
            inputs['RoisNum'] = rois_num

        if return_rois_num:
            nms_rois_num = helper.create_variable_for_type_inference(
                dtype='int32')
            outputs['NmsRoisNum'] = nms_rois_num

        helper.append_op(type="multiclass_nms3",
                         inputs=inputs,
                         attrs={
                             'background_label': background_label,
                             'score_threshold': score_threshold,
                             'nms_top_k': nms_top_k,
                             'nms_threshold': nms_threshold,
                             'keep_top_k': keep_top_k,
                             'nms_eta': nms_eta,
                             'normalized': normalized
                         },
                         outputs=outputs)
        output.stop_gradient = True
        index.stop_gradient = True
        if not return_index:
            index = None
        if not return_rois_num:
            nms_rois_num = None

        return output, nms_rois_num, index
96 97


98 99 100 101 102 103 104 105
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
106
def iou(box_a, box_b, norm):
107 108 109 110 111 112 113 114 115 116 117 118
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

J
jerrywgz 已提交
119 120 121 122
    area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
                                                    (norm == False))
    area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
                                                    (norm == False))
123 124 125 126 127 128 129 130
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

131 132
    inter_area = max(xb - xa +
                     (norm == False), 0.0) * max(yb - ya + (norm == False), 0.0)
133 134 135 136 137 138

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


J
jerrywgz 已提交
139 140 141 142 143 144 145
def nms(boxes,
        scores,
        score_threshold,
        nms_threshold,
        top_k=200,
        normalized=True,
        eta=1.0):
146 147 148 149 150
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
151 152 153 154 155 156
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
157 158 159 160 161 162 163 164 165
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

166
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
167
    sorted_scores = all_scores[sorted_indices]
168
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
169
    if top_k > -1 and top_k < sorted_indices.shape[0]:
170 171 172 173 174 175 176 177 178 179 180
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
181
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
182
                keep = True if overlap <= adaptive_threshold else False
183 184 185 186 187 188 189 190 191 192
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
J
jerrywgz 已提交
193 194 195 196 197 198 199
                   nms_top_k, keep_top_k, normalized, shared):
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
200

201
    selected_indices = {}
202 203 204
    num_det = 0
    for c in range(class_num):
        if c == background: continue
J
jerrywgz 已提交
205 206 207 208 209 210
        if shared:
            indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                          nms_top_k, normalized)
        else:
            indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
                          nms_threshold, nms_top_k, normalized)
211
        selected_indices[c] = indices
212 213 214 215
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
216
        for c, indices in selected_indices.items():
217
            for idx in indices:
J
jerrywgz 已提交
218 219 220 221
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
222

223 224 225
        sorted_score_index = sorted(score_index,
                                    key=lambda tup: tup[0],
                                    reverse=True)
226
        sorted_score_index = sorted_score_index[:keep_top_k]
227 228 229 230
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
231
        for s, c, idx in sorted_score_index:
232
            selected_indices[c].append(idx)
J
jerrywgz 已提交
233 234 235
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
236
        num_det = keep_top_k
237

238
    return selected_indices, num_det
239 240


J
jerrywgz 已提交
241 242 243
def lod_multiclass_nms(boxes, scores, background, score_threshold,
                       nms_threshold, nms_top_k, keep_top_k, box_lod,
                       normalized):
244
    num_class = boxes.shape[1]
J
jerrywgz 已提交
245 246 247 248
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
249 250 251
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
J
jerrywgz 已提交
252 253
        box = boxes[head:head + box_lod[0][n]]
        score = scores[head:head + box_lod[0][n]]
254
        offset = head
J
jerrywgz 已提交
255
        head = head + box_lod[0][n]
256 257 258 259 260 261 262 263 264
        nmsed_outs, nmsed_num = multiclass_nms(box,
                                               score,
                                               background,
                                               score_threshold,
                                               nms_threshold,
                                               nms_top_k,
                                               keep_top_k,
                                               normalized,
                                               shared=False)
265 266
        lod.append(nmsed_num)

J
jerrywgz 已提交
267 268
        if nmsed_num == 0:
            continue
269
        tmp_det_out = []
J
jerrywgz 已提交
270 271 272
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
273 274 275 276
                tmp_det_out.append([
                    c, score[idx][c], xmin, ymin, xmax, ymax,
                    offset * num_class + idx * num_class + c
                ])
277 278 279
        sorted_det_out = sorted(tmp_det_out,
                                key=lambda tup: tup[0],
                                reverse=False)
280
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
281 282 283 284 285 286 287 288 289 290 291 292

    return det_outs, lod


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           nms_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True):
293
    batch_size = scores.shape[0]
294
    num_boxes = scores.shape[2]
295
    det_outs = []
296
    index_outs = []
297
    lod = []
298
    for n in range(batch_size):
299 300 301 302 303 304 305 306 307
        nmsed_outs, nmsed_num = multiclass_nms(boxes[n],
                                               scores[n],
                                               background,
                                               score_threshold,
                                               nms_threshold,
                                               nms_top_k,
                                               keep_top_k,
                                               normalized,
                                               shared=True)
308 309
        lod.append(nmsed_num)

J
jerrywgz 已提交
310 311
        if nmsed_num == 0:
            continue
312
        tmp_det_out = []
313
        for c, indices in nmsed_outs.items():
314
            for idx in indices:
315
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
316 317 318 319
                tmp_det_out.append([
                    c, scores[n][c][idx], xmin, ymin, xmax, ymax,
                    idx + n * num_boxes
                ])
320 321 322
        sorted_det_out = sorted(tmp_det_out,
                                key=lambda tup: tup[0],
                                reverse=False)
323
        det_outs.extend(sorted_det_out)
324 325 326 327
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
328

329 330 331
    def set_argument(self):
        self.score_threshold = 0.01

332
    def setUp(self):
333
        self.set_argument()
334
        N = 7
335
        M = 1200
336 337 338 339 340 341
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
342
        score_threshold = self.score_threshold
343

D
dangqingqing 已提交
344 345 346 347 348 349
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

350 351 352
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
353

354 355 356 357 358 359 360
        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
361 362

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
363
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
364
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
365 366 367 368 369 370 371
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
372
            'normalized': True,
D
dangqingqing 已提交
373
        }
374 375 376 377 378

    def test_check_output(self):
        self.check_output()


379
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
380

381 382
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
383
        # In practical use, 0.0 < score_threshold < 1.0
384 385 386
        self.score_threshold = 2.0


J
jerrywgz 已提交
387
class TestMulticlassNMSLoDInput(OpTest):
388

J
jerrywgz 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

415 416 417 418
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
419 420 421
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
J
jerrywgz 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


442
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

467 468 469 470
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


491
class TestIOU(unittest.TestCase):
492

493 494 495 496 497
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
498
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
499
        np.testing.assert_allclose(calc_output, expt_output, rtol=1e-05)
500 501


502
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
533 534
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
556

557 558 559 560 561 562 563
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

588 589 590 591
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
592 593 594 595

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
596 597
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

617 618 619

def test_check_output(self):
    self.check_output()
620 621 622


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
623

624 625 626 627 628 629
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
630
class TestMulticlassNMSError(unittest.TestCase):
631

X
xiaoting 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

645 646 647 648 649 650
            boxes_data = fluid.data(name='bboxes',
                                    shape=[M, C, BOX_SIZE],
                                    dtype='float32')
            scores_data = fluid.data(name='scores',
                                     shape=[N, C, M],
                                     dtype='float32')
X
xiaoting 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


664
class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
665

666
    def setUp(self):
667
        self.python_api = multiclass_nms3
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
696 697
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
698 699 700
        self.op_type = 'multiclass_nms3'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
701 702
            'Out': nmsed_outs,
            'Index': index_outs,
703 704 705 706 707 708 709 710 711 712 713 714 715
            'NmsRoisNum': np.array(lod).astype('int32')
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
716
        self.check_output(check_eager=True)
717 718 719


class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
720

721 722 723 724 725 726
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


727
if __name__ == '__main__':
728
    paddle.enable_static()
729
    unittest.main()