test_cond.py 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
import os
17
import unittest
18
import paddle
19 20 21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
23
from paddle.fluid.backward import append_backward
24
from paddle.fluid.framework import Program, program_guard
25
from simple_nets import simple_fc_net_with_inputs, batchnorm_fc_with_inputs
26
import paddle
27 28

np.random.seed(123)
29 30


31
class TestCondInputOutput(unittest.TestCase):
32

33 34 35 36 37 38 39 40 41 42
    def test_return_single_var(self):
        """
        pseudocode:

        if 0.23 < 0.1:
            return 2
        else:
            return -1
        """

43 44
        paddle.enable_static()

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        def true_func():
            return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)

        def false_func():
            return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            pred = layers.less_than(y, x)
            out = layers.cond(pred, true_func, false_func)
            # out is one tensor

60 61
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
62
        exe = fluid.Executor(place)
63 64 65 66
        ret, = exe.run(main_program, fetch_list=[out.name])
        np.testing.assert_allclose(np.asarray(ret),
                                   np.full((3, 2), -1, np.int32),
                                   rtol=1e-05)
67 68 69 70 71 72 73 74 75 76 77

    def test_return_var_tuple(self):
        """
        pseudocode:

        if True:
            return 1, True
        else:
            return 3, 2
        """

78 79
        paddle.enable_static()

80
        def true_func():
81 82 83 84 85
            return layers.fill_constant(shape=[1, 2], dtype='int32',
                                        value=1), layers.fill_constant(
                                            shape=[2, 3],
                                            dtype='bool',
                                            value=True)
86 87

        def false_func():
88 89 90 91 92
            return layers.fill_constant(shape=[3, 4], dtype='float32',
                                        value=3), layers.fill_constant(
                                            shape=[4, 5],
                                            dtype='int64',
                                            value=2)
93 94 95 96 97 98 99 100

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
            out = layers.cond(pred, true_func, false_func)
            # out is a tuple containing 2 tensors

101 102
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
103 104
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=out)
105 106 107 108 109 110
        np.testing.assert_allclose(np.asarray(ret[0]),
                                   np.full((1, 2), 1, np.int32),
                                   rtol=1e-05)
        np.testing.assert_allclose(np.asarray(ret[1]),
                                   np.full((2, 3), True, bool),
                                   rtol=1e-05)
111 112 113 114 115 116 117 118 119 120 121 122

    def test_pass_and_modify_var(self):
        """
        pseudocode:
        for i in range(5):
            a = 7
            if i % 2 == 0:
                a = a * (i + 1)
            else:
                a = a - (i - 1)
        """

123 124
        paddle.enable_static()

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        def true_func(a, i):
            a = a * (i + 1)
            return a

        def false_func(a, i):
            a = a - (i - 1)
            return a

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            a = layers.cond(pred, lambda: true_func(a, i),
                            lambda: false_func(a, i))
141 142
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
143 144 145
        exe = fluid.Executor(place)
        for feed_i in range(5):
            expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
146 147 148 149 150 151
            ret, = exe.run(main_program,
                           feed={'i': np.full((1), feed_i, np.int32)},
                           fetch_list=[a])
            np.testing.assert_allclose(np.asarray(ret),
                                       np.full((3, 2, 1), expected_a, np.int32),
                                       rtol=1e-05)
152 153 154 155 156 157 158 159 160 161 162

    def test_return_none(self):
        """
        pseudocode: test doing nothing in branches
        for i in range(5):
            if i % 2 == 0:
                pass
            else:
                pass
        """

163 164
        paddle.enable_static()

165 166 167 168 169 170 171 172 173 174 175 176 177 178
        def true_func():
            pass

        def false_func():
            return None

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            out1 = layers.cond(pred, true_func, false_func)
            out2 = layers.cond(pred, None, false_func)
            out3 = layers.cond(pred, true_func, None)
179 180
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
181 182 183 184 185 186 187 188 189 190 191 192 193
        exe = fluid.Executor(place)
        for feed_i in range(5):
            # Test that output is None is runnable
            exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
            self.assertIsNone(out1)
            self.assertIsNone(out2)
            self.assertIsNone(out3)

    def test_wrong_structure_exception(self):
        """
        test returning different number of tensors cannot merge into output
        """

194 195
        paddle.enable_static()

196 197 198 199 200 201 202
        def func_return_none():
            return None

        def func_return_one_tensor():
            return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)

        def func_return_two_tensors():
203 204 205 206 207
            return layers.fill_constant(shape=[3, 1], dtype='int32',
                                        value=7), layers.fill_constant(
                                            shape=[3, 1],
                                            dtype='int32',
                                            value=8)
208 209 210 211 212 213

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
214
            with self.assertRaises(TypeError):
215 216
                out = layers.cond(pred, i, func_return_one_tensor)

217
            with self.assertRaises(TypeError):
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                out = layers.cond(pred, func_return_one_tensor, np.asarray([3]))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_none,
                                  func_return_one_tensor)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_two_tensors,
                                  func_return_none)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_one_tensor,
                                  func_return_two_tensors)
            self.assertTrue(
238 239
                "true fn returns 1 vars, but false fn returns 2 vars, which is not equals"
                in str(e.exception))
240

241
    def test_extremely_simple_net_with_op_in_condition(self):
242
        paddle.enable_static()
243 244 245
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
246 247 248
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.23)
249
            a.stop_gradient = False
250 251 252
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.25)
253 254 255 256
            b.stop_gradient = False
            out = layers.cond(a - b < -1.0, lambda: a, lambda: b)
        append_backward(out)

257 258
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
259
        exe = fluid.Executor(place)
260 261
        ret = exe.run(main_program,
                      fetch_list=[out, b, a.grad_name, b.grad_name])
262 263
        # Note: fill_constant has loss of precision, you have to assertEqual
        # with values doens't lose precision in float-point number.
264 265 266
        self.assertEqual(ret[0][0], ret[1][0])
        self.assertEqual(ret[2][0], 0.0)
        self.assertEqual(ret[3][0], 1.0)
267

268

269
class TestCondNestedControlFlow(unittest.TestCase):
270

271 272 273 274 275 276 277
    def test_cond_inside_cond(self):
        """
        pseudocode:
        for i in range(1, 10):
            a = 2 * i
            if i < 5:
                if i >= 3:
278
                    return a + a
279 280 281 282 283 284 285 286 287
                else:
                    return a - a
            else:
                if i < 8:
                    return a * a
                else:
                    return a / a
        """

288 289
        paddle.enable_static()

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        def less_than_branch(i, a):
            return layers.cond(i >= 3.0, lambda: layers.elementwise_add(a, a),
                               lambda: layers.elementwise_sub(a, a))

        def greater_equal_branch(i, a):
            return layers.cond(i < 8.0, lambda: layers.elementwise_mul(a, a),
                               lambda: layers.elementwise_div(a, a))

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='float32')
            a = 2.0 * i
            out = layers.cond(i < 5.0, lambda: less_than_branch(i, a),
                              lambda: greater_equal_branch(i, a))
305
            mean = paddle.mean(out)
306 307
            append_backward(mean)

308 309
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        exe = fluid.Executor(place)
        for feed_i in range(0, 10):
            expected_a = 2.0 * feed_i
            if feed_i < 5:
                expected_ret = expected_a + expected_a if feed_i >= 3 else 0.0
                expected_a_grad = 2.0 if feed_i >= 3 else 0.0
            else:
                expected_ret = expected_a * expected_a if feed_i < 8 else 1.0
                expected_a_grad = 2.0 * expected_a if feed_i < 8 else 0.0
            ret = exe.run(main_program,
                          feed={'i': np.full((1), feed_i, np.float32)},
                          fetch_list=[out.name, a.grad_name])
            self.assertEqual(ret[0][0], expected_ret)
            self.assertEqual(ret[1][0], expected_a_grad)

325
    def test_cond_op_in_condition(self):
326
        paddle.enable_static()
327 328 329 330
        main_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
331 332 333
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.23)
334
            a.stop_gradient = False
335 336 337
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.24)
338 339
            b.stop_gradient = False
            out = fluid.layers.cond(
340 341 342 343 344
                a < b, lambda: fluid.layers.cond(
                    a - b < -1.0, lambda: fluid.layers.elementwise_add(a, b),
                    lambda: fluid.layers.elementwise_mul(a, b)), lambda:
                fluid.layers.cond(a == b, lambda: fluid.layers.elementwise_sub(
                    a, b), lambda: fluid.layers.elementwise_pow(a, b)))
345 346
            append_backward(out)

347 348
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
349 350
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out, a.grad_name, b.grad_name])
351
        # Note: fill_constant has loss of precision, so we assertAlmostEqual.
352 353 354 355
        self.assertAlmostEqual(ret[0][0], 1.5252)
        self.assertAlmostEqual(ret[1][0], 1.24)
        self.assertAlmostEqual(ret[2][0], 1.23)

356

357
class TestCondBackward(unittest.TestCase):
358

359
    def backward_value_helper(self, cond_func, use_cuda, use_parallel_exe):
360 361 362
        """
        Helper function that compares calculated backward value is close to dy/dx
        """
363
        paddle.enable_static()
364 365 366 367 368 369 370 371 372 373 374
        main_program = Program()
        main_program.random_seed = 123
        startup_program = Program()
        startup_program.random_seed = 123
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 9], dtype='float32')
            img.stop_gradient = False
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            append_backward(loss)
375
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
376 377 378
        exe = fluid.Executor(place)
        exe.run(startup_program)

379 380 381
        num_devices = 1
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
382 383 384
            exe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                         main_program=main_program,
                                         loss_name=loss.name)
385 386
            num_devices = exe.device_count

387 388 389
        delta = 0.005
        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[1, 9]).astype(np.float32)
390 391 392 393
            feed_label = np.random.randint(low=0,
                                           high=10,
                                           size=[1, 1],
                                           dtype=np.int64)
394 395 396 397
            if use_parallel_exe:
                img_grad, loss_value = exe.run(
                    feed={
                        'i': np.full((num_devices), feed_i, np.int32),
398 399
                        'image': np.repeat(feed_img, num_devices, axis=0),
                        'label': np.repeat(feed_label, num_devices, axis=0)
400 401 402 403 404 405 406 407 408 409 410
                    },
                    fetch_list=[img.grad_name, loss.name])
            else:
                img_grad, loss_value = exe.run(
                    main_program,
                    feed={
                        'i': np.full((1), feed_i, np.int32),
                        'image': feed_img,
                        'label': feed_label
                    },
                    fetch_list=[img.grad_name, loss.name])
411

412
            numerical_grad = np.zeros(shape=[num_devices, 9], dtype=np.float32)
413 414 415
            feed_img_delta = np.copy(feed_img)
            for j in range(9):
                feed_img_delta[0][j] = feed_img[0][j] + delta
416 417
                if use_parallel_exe:
                    loss_delta = exe.run(feed={
418 419 420 421 422 423
                        'i':
                        np.full((num_devices), feed_i, np.int32),
                        'image':
                        np.repeat(feed_img_delta, num_devices, axis=0),
                        'label':
                        np.repeat(feed_label, num_devices, axis=0)
424 425
                    },
                                         fetch_list=[loss.name])
426 427
                    multi_device_grad = (loss_delta[0] -
                                         loss_value[0]) / delta / num_devices
428 429 430 431 432 433 434 435 436 437 438
                    for d in range(num_devices):
                        numerical_grad[d][j] = multi_device_grad[d]
                else:
                    loss_delta = exe.run(main_program,
                                         feed={
                                             'i': np.full((1), feed_i,
                                                          np.int32),
                                             'image': feed_img_delta,
                                             'label': feed_label
                                         },
                                         fetch_list=[loss.name])
439 440
                    numerical_grad[0][j] = (loss_delta[0] -
                                            loss_value[0]) / delta
441
                feed_img_delta[0][j] = feed_img[0][j]
442 443 444 445
            np.testing.assert_allclose(img_grad,
                                       numerical_grad,
                                       rtol=0.05,
                                       atol=0.05)
446

447
    def add_optimizer_helper(self, cond_func, use_cuda, use_parallel_exe):
448 449 450 451 452 453 454 455 456 457 458 459 460
        """
        Test that program is runnable when add optimizer
        """
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 784], dtype='float32')
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)

461
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
462 463
        exe = fluid.Executor(place)
        exe.run(startup_program)
464 465
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
466 467 468
            exe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                         main_program=main_program,
                                         loss_name=loss.name)
469
            num_devices = exe.device_count
470 471 472

        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[16, 784]).astype(np.float32)
473 474 475 476
            feed_label = np.random.randint(low=0,
                                           high=10,
                                           size=[16, 1],
                                           dtype=np.int64)
477 478 479
            if use_parallel_exe:
                exe.run(feed={
                    'i': np.full((num_devices), feed_i, np.int32),
480 481
                    'image': np.repeat(feed_img, num_devices, axis=0),
                    'label': np.repeat(feed_label, num_devices, axis=0)
482 483 484 485 486 487 488 489 490 491
                },
                        fetch_list=[loss.name])
            else:
                exe.run(main_program,
                        feed={
                            'i': np.full((1), feed_i, np.int32),
                            'image': feed_img,
                            'label': feed_label
                        },
                        fetch_list=[loss])
492 493

    def test_cond_backward(self):
494

495 496
        paddle.enable_static()

497 498
        def cond_func(i, img, label):
            predicate = ((i % 2) == 0)
499 500 501 502
            return layers.cond(
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
503

504
        for use_parallel_exe in [False, True]:
505 506 507 508 509 510
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

511
            self.backward_value_helper(cond_func, core.is_compiled_with_cuda(),
512
                                       use_parallel_exe)
513
            self.add_optimizer_helper(cond_func, core.is_compiled_with_cuda(),
514
                                      use_parallel_exe)
515 516

    def test_half_nested_cond_backward(self):
517
        paddle.enable_static()
518

519
        def branch(i, img, label):
520 521 522 523
            return layers.cond(
                (i % 2) == 0,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
524 525 526

        def cond_func_simple_net_at_true(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label),
527
                               lambda: paddle.mean(img))
528 529

        def cond_func_simple_net_at_false(i, img, label):
530
            return layers.cond(i < 5, lambda: paddle.mean(img),
531 532
                               lambda: branch(i, img, label))

533
        for use_parallel_exe in [False, True]:
534 535 536 537 538 539
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

540 541 542 543 544 545 546 547 548 549 550 551
            self.backward_value_helper(cond_func_simple_net_at_true,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_true,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
            self.backward_value_helper(cond_func_simple_net_at_false,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_false,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
552 553

    def test_nested_cond_backward(self):
554
        paddle.enable_static()
555

556 557 558 559 560
        def branch(i, img, label, mod_two):
            if mod_two:
                predicate = ((i % 2) == 0)
            else:
                predicate = ((i % 2) != 0)
561 562 563 564
            return layers.cond(
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
565 566 567 568 569

        def cond_func(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label, True),
                               lambda: branch(i, img, label, False))

570
        for use_parallel_exe in [False, True]:
571 572 573 574 575
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue
576
            self.backward_value_helper(cond_func, core.is_compiled_with_cuda(),
577
                                       use_parallel_exe)
578
            self.add_optimizer_helper(cond_func, core.is_compiled_with_cuda(),
579
                                      use_parallel_exe)
580 581


582
class TestCondWithError(unittest.TestCase):
583

584
    def test_input_type_error(self):
585
        paddle.enable_static()
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
        main_program = framework.Program()
        startup_program = framework.Program()
        with framework.program_guard(main_program, startup_program):
            pred = fluid.data(name='y', shape=[1], dtype='bool')

            def func():
                return pred

            with self.assertRaises(TypeError):
                layers.cond(None, func, func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, set())

            with self.assertRaises(TypeError):
                layers.cond(pred, set(), func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, func, set())


607 608
if __name__ == '__main__':
    unittest.main()