test_cond.py 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
18
import os
19
import unittest
20
import paddle
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
25
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import Program, program_guard
27
from simple_nets import simple_fc_net_with_inputs, batchnorm_fc_with_inputs
28
import paddle
29 30

np.random.seed(123)
31 32


33
class TestCondInputOutput(unittest.TestCase):
34

35 36 37 38 39 40 41 42 43 44
    def test_return_single_var(self):
        """
        pseudocode:

        if 0.23 < 0.1:
            return 2
        else:
            return -1
        """

45 46
        paddle.enable_static()

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        def true_func():
            return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)

        def false_func():
            return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            pred = layers.less_than(y, x)
            out = layers.cond(pred, true_func, false_func)
            # out is one tensor

62 63
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
64
        exe = fluid.Executor(place)
65 66 67 68
        ret, = exe.run(main_program, fetch_list=[out.name])
        np.testing.assert_allclose(np.asarray(ret),
                                   np.full((3, 2), -1, np.int32),
                                   rtol=1e-05)
69 70 71 72 73 74 75 76 77 78 79

    def test_return_var_tuple(self):
        """
        pseudocode:

        if True:
            return 1, True
        else:
            return 3, 2
        """

80 81
        paddle.enable_static()

82
        def true_func():
83 84 85 86 87
            return layers.fill_constant(shape=[1, 2], dtype='int32',
                                        value=1), layers.fill_constant(
                                            shape=[2, 3],
                                            dtype='bool',
                                            value=True)
88 89

        def false_func():
90 91 92 93 94
            return layers.fill_constant(shape=[3, 4], dtype='float32',
                                        value=3), layers.fill_constant(
                                            shape=[4, 5],
                                            dtype='int64',
                                            value=2)
95 96 97 98 99 100 101 102

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
            out = layers.cond(pred, true_func, false_func)
            # out is a tuple containing 2 tensors

103 104
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
105 106
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=out)
107 108 109 110 111 112
        np.testing.assert_allclose(np.asarray(ret[0]),
                                   np.full((1, 2), 1, np.int32),
                                   rtol=1e-05)
        np.testing.assert_allclose(np.asarray(ret[1]),
                                   np.full((2, 3), True, bool),
                                   rtol=1e-05)
113 114 115 116 117 118 119 120 121 122 123 124

    def test_pass_and_modify_var(self):
        """
        pseudocode:
        for i in range(5):
            a = 7
            if i % 2 == 0:
                a = a * (i + 1)
            else:
                a = a - (i - 1)
        """

125 126
        paddle.enable_static()

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        def true_func(a, i):
            a = a * (i + 1)
            return a

        def false_func(a, i):
            a = a - (i - 1)
            return a

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            a = layers.cond(pred, lambda: true_func(a, i),
                            lambda: false_func(a, i))
143 144
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
145 146 147
        exe = fluid.Executor(place)
        for feed_i in range(5):
            expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
148 149 150 151 152 153
            ret, = exe.run(main_program,
                           feed={'i': np.full((1), feed_i, np.int32)},
                           fetch_list=[a])
            np.testing.assert_allclose(np.asarray(ret),
                                       np.full((3, 2, 1), expected_a, np.int32),
                                       rtol=1e-05)
154 155 156 157 158 159 160 161 162 163 164

    def test_return_none(self):
        """
        pseudocode: test doing nothing in branches
        for i in range(5):
            if i % 2 == 0:
                pass
            else:
                pass
        """

165 166
        paddle.enable_static()

167 168 169 170 171 172 173 174 175 176 177 178 179 180
        def true_func():
            pass

        def false_func():
            return None

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            out1 = layers.cond(pred, true_func, false_func)
            out2 = layers.cond(pred, None, false_func)
            out3 = layers.cond(pred, true_func, None)
181 182
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
183 184 185 186 187 188 189 190 191 192 193 194 195
        exe = fluid.Executor(place)
        for feed_i in range(5):
            # Test that output is None is runnable
            exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
            self.assertIsNone(out1)
            self.assertIsNone(out2)
            self.assertIsNone(out3)

    def test_wrong_structure_exception(self):
        """
        test returning different number of tensors cannot merge into output
        """

196 197
        paddle.enable_static()

198 199 200 201 202 203 204
        def func_return_none():
            return None

        def func_return_one_tensor():
            return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)

        def func_return_two_tensors():
205 206 207 208 209
            return layers.fill_constant(shape=[3, 1], dtype='int32',
                                        value=7), layers.fill_constant(
                                            shape=[3, 1],
                                            dtype='int32',
                                            value=8)
210 211 212 213 214 215

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
216
            with self.assertRaises(TypeError):
217 218
                out = layers.cond(pred, i, func_return_one_tensor)

219
            with self.assertRaises(TypeError):
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                out = layers.cond(pred, func_return_one_tensor, np.asarray([3]))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_none,
                                  func_return_one_tensor)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_two_tensors,
                                  func_return_none)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_one_tensor,
                                  func_return_two_tensors)
            self.assertTrue(
240 241
                "true fn returns 1 vars, but false fn returns 2 vars, which is not equals"
                in str(e.exception))
242

243
    def test_extremely_simple_net_with_op_in_condition(self):
244
        paddle.enable_static()
245 246 247
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
248 249 250
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.23)
251
            a.stop_gradient = False
252 253 254
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.25)
255 256 257 258
            b.stop_gradient = False
            out = layers.cond(a - b < -1.0, lambda: a, lambda: b)
        append_backward(out)

259 260
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
261
        exe = fluid.Executor(place)
262 263
        ret = exe.run(main_program,
                      fetch_list=[out, b, a.grad_name, b.grad_name])
264 265
        # Note: fill_constant has loss of precision, you have to assertEqual
        # with values doens't lose precision in float-point number.
266 267 268
        self.assertEqual(ret[0][0], ret[1][0])
        self.assertEqual(ret[2][0], 0.0)
        self.assertEqual(ret[3][0], 1.0)
269

270

271
class TestCondNestedControlFlow(unittest.TestCase):
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def test_cond_inside_cond(self):
        """
        pseudocode:
        for i in range(1, 10):
            a = 2 * i
            if i < 5:
                if i >= 3:
                    return a + a 
                else:
                    return a - a
            else:
                if i < 8:
                    return a * a
                else:
                    return a / a
        """

290 291
        paddle.enable_static()

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        def less_than_branch(i, a):
            return layers.cond(i >= 3.0, lambda: layers.elementwise_add(a, a),
                               lambda: layers.elementwise_sub(a, a))

        def greater_equal_branch(i, a):
            return layers.cond(i < 8.0, lambda: layers.elementwise_mul(a, a),
                               lambda: layers.elementwise_div(a, a))

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='float32')
            a = 2.0 * i
            out = layers.cond(i < 5.0, lambda: less_than_branch(i, a),
                              lambda: greater_equal_branch(i, a))
307
            mean = paddle.mean(out)
308 309
            append_backward(mean)

310 311
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        exe = fluid.Executor(place)
        for feed_i in range(0, 10):
            expected_a = 2.0 * feed_i
            if feed_i < 5:
                expected_ret = expected_a + expected_a if feed_i >= 3 else 0.0
                expected_a_grad = 2.0 if feed_i >= 3 else 0.0
            else:
                expected_ret = expected_a * expected_a if feed_i < 8 else 1.0
                expected_a_grad = 2.0 * expected_a if feed_i < 8 else 0.0
            ret = exe.run(main_program,
                          feed={'i': np.full((1), feed_i, np.float32)},
                          fetch_list=[out.name, a.grad_name])
            self.assertEqual(ret[0][0], expected_ret)
            self.assertEqual(ret[1][0], expected_a_grad)

327
    def test_cond_op_in_condition(self):
328
        paddle.enable_static()
329 330 331 332
        main_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
333 334 335
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.23)
336
            a.stop_gradient = False
337 338 339
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.24)
340 341
            b.stop_gradient = False
            out = fluid.layers.cond(
342 343 344 345 346
                a < b, lambda: fluid.layers.cond(
                    a - b < -1.0, lambda: fluid.layers.elementwise_add(a, b),
                    lambda: fluid.layers.elementwise_mul(a, b)), lambda:
                fluid.layers.cond(a == b, lambda: fluid.layers.elementwise_sub(
                    a, b), lambda: fluid.layers.elementwise_pow(a, b)))
347 348
            append_backward(out)

349 350
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
351 352
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out, a.grad_name, b.grad_name])
353
        # Note: fill_constant has loss of precision, so we assertAlmostEqual.
354 355 356 357
        self.assertAlmostEqual(ret[0][0], 1.5252)
        self.assertAlmostEqual(ret[1][0], 1.24)
        self.assertAlmostEqual(ret[2][0], 1.23)

358

359
class TestCondBackward(unittest.TestCase):
360

361
    def backward_value_helper(self, cond_func, use_cuda, use_parallel_exe):
362 363 364
        """
        Helper function that compares calculated backward value is close to dy/dx
        """
365
        paddle.enable_static()
366 367 368 369 370 371 372 373 374 375 376
        main_program = Program()
        main_program.random_seed = 123
        startup_program = Program()
        startup_program.random_seed = 123
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 9], dtype='float32')
            img.stop_gradient = False
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            append_backward(loss)
377
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
378 379 380
        exe = fluid.Executor(place)
        exe.run(startup_program)

381 382 383
        num_devices = 1
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
384 385 386
            exe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                         main_program=main_program,
                                         loss_name=loss.name)
387 388
            num_devices = exe.device_count

389 390 391
        delta = 0.005
        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[1, 9]).astype(np.float32)
392 393 394 395
            feed_label = np.random.randint(low=0,
                                           high=10,
                                           size=[1, 1],
                                           dtype=np.int64)
396 397 398 399
            if use_parallel_exe:
                img_grad, loss_value = exe.run(
                    feed={
                        'i': np.full((num_devices), feed_i, np.int32),
400 401
                        'image': np.repeat(feed_img, num_devices, axis=0),
                        'label': np.repeat(feed_label, num_devices, axis=0)
402 403 404 405 406 407 408 409 410 411 412
                    },
                    fetch_list=[img.grad_name, loss.name])
            else:
                img_grad, loss_value = exe.run(
                    main_program,
                    feed={
                        'i': np.full((1), feed_i, np.int32),
                        'image': feed_img,
                        'label': feed_label
                    },
                    fetch_list=[img.grad_name, loss.name])
413

414
            numerical_grad = np.zeros(shape=[num_devices, 9], dtype=np.float32)
415 416 417
            feed_img_delta = np.copy(feed_img)
            for j in range(9):
                feed_img_delta[0][j] = feed_img[0][j] + delta
418 419
                if use_parallel_exe:
                    loss_delta = exe.run(feed={
420 421 422 423 424 425
                        'i':
                        np.full((num_devices), feed_i, np.int32),
                        'image':
                        np.repeat(feed_img_delta, num_devices, axis=0),
                        'label':
                        np.repeat(feed_label, num_devices, axis=0)
426 427
                    },
                                         fetch_list=[loss.name])
428 429
                    multi_device_grad = (loss_delta[0] -
                                         loss_value[0]) / delta / num_devices
430 431 432 433 434 435 436 437 438 439 440
                    for d in range(num_devices):
                        numerical_grad[d][j] = multi_device_grad[d]
                else:
                    loss_delta = exe.run(main_program,
                                         feed={
                                             'i': np.full((1), feed_i,
                                                          np.int32),
                                             'image': feed_img_delta,
                                             'label': feed_label
                                         },
                                         fetch_list=[loss.name])
441 442
                    numerical_grad[0][j] = (loss_delta[0] -
                                            loss_value[0]) / delta
443
                feed_img_delta[0][j] = feed_img[0][j]
444 445 446 447
            np.testing.assert_allclose(img_grad,
                                       numerical_grad,
                                       rtol=0.05,
                                       atol=0.05)
448

449
    def add_optimizer_helper(self, cond_func, use_cuda, use_parallel_exe):
450 451 452 453 454 455 456 457 458 459 460 461 462
        """
        Test that program is runnable when add optimizer
        """
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 784], dtype='float32')
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)

463
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
464 465
        exe = fluid.Executor(place)
        exe.run(startup_program)
466 467
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
468 469 470
            exe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                         main_program=main_program,
                                         loss_name=loss.name)
471
            num_devices = exe.device_count
472 473 474

        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[16, 784]).astype(np.float32)
475 476 477 478
            feed_label = np.random.randint(low=0,
                                           high=10,
                                           size=[16, 1],
                                           dtype=np.int64)
479 480 481
            if use_parallel_exe:
                exe.run(feed={
                    'i': np.full((num_devices), feed_i, np.int32),
482 483
                    'image': np.repeat(feed_img, num_devices, axis=0),
                    'label': np.repeat(feed_label, num_devices, axis=0)
484 485 486 487 488 489 490 491 492 493
                },
                        fetch_list=[loss.name])
            else:
                exe.run(main_program,
                        feed={
                            'i': np.full((1), feed_i, np.int32),
                            'image': feed_img,
                            'label': feed_label
                        },
                        fetch_list=[loss])
494 495

    def test_cond_backward(self):
496

497 498
        paddle.enable_static()

499 500
        def cond_func(i, img, label):
            predicate = ((i % 2) == 0)
501 502 503 504
            return layers.cond(
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
505

506
        for use_parallel_exe in [False, True]:
507 508 509 510 511 512
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

513
            self.backward_value_helper(cond_func, core.is_compiled_with_cuda(),
514
                                       use_parallel_exe)
515
            self.add_optimizer_helper(cond_func, core.is_compiled_with_cuda(),
516
                                      use_parallel_exe)
517 518

    def test_half_nested_cond_backward(self):
519
        paddle.enable_static()
520

521
        def branch(i, img, label):
522 523 524 525
            return layers.cond(
                (i % 2) == 0,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
526 527 528

        def cond_func_simple_net_at_true(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label),
529
                               lambda: paddle.mean(img))
530 531

        def cond_func_simple_net_at_false(i, img, label):
532
            return layers.cond(i < 5, lambda: paddle.mean(img),
533 534
                               lambda: branch(i, img, label))

535
        for use_parallel_exe in [False, True]:
536 537 538 539 540 541
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

542 543 544 545 546 547 548 549 550 551 552 553
            self.backward_value_helper(cond_func_simple_net_at_true,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_true,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
            self.backward_value_helper(cond_func_simple_net_at_false,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_false,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
554 555

    def test_nested_cond_backward(self):
556
        paddle.enable_static()
557

558 559 560 561 562
        def branch(i, img, label, mod_two):
            if mod_two:
                predicate = ((i % 2) == 0)
            else:
                predicate = ((i % 2) != 0)
563 564 565 566
            return layers.cond(
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
567 568 569 570 571

        def cond_func(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label, True),
                               lambda: branch(i, img, label, False))

572
        for use_parallel_exe in [False, True]:
573 574 575 576 577
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue
578
            self.backward_value_helper(cond_func, core.is_compiled_with_cuda(),
579
                                       use_parallel_exe)
580
            self.add_optimizer_helper(cond_func, core.is_compiled_with_cuda(),
581
                                      use_parallel_exe)
582 583


584
class TestCondWithError(unittest.TestCase):
585

586
    def test_input_type_error(self):
587
        paddle.enable_static()
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        main_program = framework.Program()
        startup_program = framework.Program()
        with framework.program_guard(main_program, startup_program):
            pred = fluid.data(name='y', shape=[1], dtype='bool')

            def func():
                return pred

            with self.assertRaises(TypeError):
                layers.cond(None, func, func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, set())

            with self.assertRaises(TypeError):
                layers.cond(pred, set(), func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, func, set())


609 610
if __name__ == '__main__':
    unittest.main()