test_cond.py 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
18
import os
19 20 21 22 23 24
import unittest

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
25
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import Program, program_guard
27 28 29
from simple_nets import simple_fc_net_with_inputs, batchnorm_fc_with_inputs

np.random.seed(123)
30 31


32
class TestCondInputOutput(unittest.TestCase):
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def test_return_single_var(self):
        """
        pseudocode:

        if 0.23 < 0.1:
            return 2
        else:
            return -1
        """

        def true_func():
            return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)

        def false_func():
            return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            pred = layers.less_than(y, x)
            out = layers.cond(pred, true_func, false_func)
            # out is one tensor

59 60
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out.name])
        self.assertTrue(
            np.allclose(np.asarray(ret), np.full((3, 2), -1, np.int32)))

    def test_return_var_tuple(self):
        """
        pseudocode:

        if True:
            return 1, True
        else:
            return 3, 2
        """

        def true_func():
77 78 79 80 81
            return layers.fill_constant(shape=[1, 2], dtype='int32',
                                        value=1), layers.fill_constant(
                                            shape=[2, 3],
                                            dtype='bool',
                                            value=True)
82 83

        def false_func():
84 85 86 87 88
            return layers.fill_constant(shape=[3, 4], dtype='float32',
                                        value=3), layers.fill_constant(
                                            shape=[4, 5],
                                            dtype='int64',
                                            value=2)
89 90 91 92 93 94 95 96

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
            out = layers.cond(pred, true_func, false_func)
            # out is a tuple containing 2 tensors

97 98
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
99 100 101 102 103
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=out)
        self.assertTrue(
            np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
        self.assertTrue(
104
            np.allclose(np.asarray(ret[1]), np.full((2, 3), True, bool)))
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    def test_pass_and_modify_var(self):
        """
        pseudocode:
        for i in range(5):
            a = 7
            if i % 2 == 0:
                a = a * (i + 1)
            else:
                a = a - (i - 1)
        """

        def true_func(a, i):
            a = a * (i + 1)
            return a

        def false_func(a, i):
            a = a - (i - 1)
            return a

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            a = layers.cond(pred, lambda: true_func(a, i),
                            lambda: false_func(a, i))
133 134
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
135 136 137 138 139 140 141
        exe = fluid.Executor(place)
        for feed_i in range(5):
            expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
            ret = exe.run(main_program,
                          feed={'i': np.full((1), feed_i, np.int32)},
                          fetch_list=[a])
            self.assertTrue(
142 143
                np.allclose(np.asarray(ret),
                            np.full((3, 2, 1), expected_a, np.int32)))
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    def test_return_none(self):
        """
        pseudocode: test doing nothing in branches
        for i in range(5):
            if i % 2 == 0:
                pass
            else:
                pass
        """

        def true_func():
            pass

        def false_func():
            return None

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            out1 = layers.cond(pred, true_func, false_func)
            out2 = layers.cond(pred, None, false_func)
            out3 = layers.cond(pred, true_func, None)
169 170
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        exe = fluid.Executor(place)
        for feed_i in range(5):
            # Test that output is None is runnable
            exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
            self.assertIsNone(out1)
            self.assertIsNone(out2)
            self.assertIsNone(out3)

    def test_wrong_structure_exception(self):
        """
        test returning different number of tensors cannot merge into output
        """

        def func_return_none():
            return None

        def func_return_one_tensor():
            return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)

        def func_return_two_tensors():
191 192 193 194 195
            return layers.fill_constant(shape=[3, 1], dtype='int32',
                                        value=7), layers.fill_constant(
                                            shape=[3, 1],
                                            dtype='int32',
                                            value=8)
196 197 198 199 200 201

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
202
            with self.assertRaises(TypeError):
203 204
                out = layers.cond(pred, i, func_return_one_tensor)

205
            with self.assertRaises(TypeError):
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                out = layers.cond(pred, func_return_one_tensor, np.asarray([3]))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_none,
                                  func_return_one_tensor)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_two_tensors,
                                  func_return_none)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_one_tensor,
                                  func_return_two_tensors)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

229 230 231 232
    def test_extremely_simple_net_with_op_in_condition(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
233 234 235
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.23)
236
            a.stop_gradient = False
237 238 239
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.25)
240 241 242 243
            b.stop_gradient = False
            out = layers.cond(a - b < -1.0, lambda: a, lambda: b)
        append_backward(out)

244 245
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
246
        exe = fluid.Executor(place)
247 248
        ret = exe.run(main_program,
                      fetch_list=[out, b, a.grad_name, b.grad_name])
249 250
        # Note: fill_constant has loss of precision, you have to assertEqual
        # with values doens't lose precision in float-point number.
251 252 253
        self.assertEqual(ret[0][0], ret[1][0])
        self.assertEqual(ret[2][0], 0.0)
        self.assertEqual(ret[3][0], 1.0)
254

255

256
class TestCondNestedControlFlow(unittest.TestCase):
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    def test_cond_inside_cond(self):
        """
        pseudocode:
        for i in range(1, 10):
            a = 2 * i
            if i < 5:
                if i >= 3:
                    return a + a 
                else:
                    return a - a
            else:
                if i < 8:
                    return a * a
                else:
                    return a / a
        """

        def less_than_branch(i, a):
            return layers.cond(i >= 3.0, lambda: layers.elementwise_add(a, a),
                               lambda: layers.elementwise_sub(a, a))

        def greater_equal_branch(i, a):
            return layers.cond(i < 8.0, lambda: layers.elementwise_mul(a, a),
                               lambda: layers.elementwise_div(a, a))

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='float32')
            a = 2.0 * i
            out = layers.cond(i < 5.0, lambda: less_than_branch(i, a),
                              lambda: greater_equal_branch(i, a))
            mean = layers.mean(out)
            append_backward(mean)

293 294
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        exe = fluid.Executor(place)
        for feed_i in range(0, 10):
            expected_a = 2.0 * feed_i
            if feed_i < 5:
                expected_ret = expected_a + expected_a if feed_i >= 3 else 0.0
                expected_a_grad = 2.0 if feed_i >= 3 else 0.0
            else:
                expected_ret = expected_a * expected_a if feed_i < 8 else 1.0
                expected_a_grad = 2.0 * expected_a if feed_i < 8 else 0.0
            ret = exe.run(main_program,
                          feed={'i': np.full((1), feed_i, np.float32)},
                          fetch_list=[out.name, a.grad_name])
            self.assertEqual(ret[0][0], expected_ret)
            self.assertEqual(ret[1][0], expected_a_grad)

310 311 312 313 314
    def test_cond_op_in_condition(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
315 316 317
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.23)
318
            a.stop_gradient = False
319 320 321
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.24)
322 323
            b.stop_gradient = False
            out = fluid.layers.cond(
324 325 326 327 328
                a < b, lambda: fluid.layers.cond(
                    a - b < -1.0, lambda: fluid.layers.elementwise_add(a, b),
                    lambda: fluid.layers.elementwise_mul(a, b)), lambda:
                fluid.layers.cond(a == b, lambda: fluid.layers.elementwise_sub(
                    a, b), lambda: fluid.layers.elementwise_pow(a, b)))
329 330
            append_backward(out)

331 332
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
333 334
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out, a.grad_name, b.grad_name])
335
        # Note: fill_constant has loss of precision, so we assertAlmostEqual.
336 337 338 339
        self.assertAlmostEqual(ret[0][0], 1.5252)
        self.assertAlmostEqual(ret[1][0], 1.24)
        self.assertAlmostEqual(ret[2][0], 1.23)

340

341
class TestCondBackward(unittest.TestCase):
342

343
    def backward_value_helper(self, cond_func, use_cuda, use_parallel_exe):
344 345 346 347 348 349 350 351 352 353 354 355 356 357
        """
        Helper function that compares calculated backward value is close to dy/dx
        """
        main_program = Program()
        main_program.random_seed = 123
        startup_program = Program()
        startup_program.random_seed = 123
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 9], dtype='float32')
            img.stop_gradient = False
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            append_backward(loss)
358
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
359 360 361
        exe = fluid.Executor(place)
        exe.run(startup_program)

362 363 364
        num_devices = 1
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
365 366 367
            exe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                         main_program=main_program,
                                         loss_name=loss.name)
368 369
            num_devices = exe.device_count

370 371 372
        delta = 0.005
        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[1, 9]).astype(np.float32)
373 374 375 376
            feed_label = np.random.randint(low=0,
                                           high=10,
                                           size=[1, 1],
                                           dtype=np.int64)
377 378 379 380
            if use_parallel_exe:
                img_grad, loss_value = exe.run(
                    feed={
                        'i': np.full((num_devices), feed_i, np.int32),
381 382
                        'image': np.repeat(feed_img, num_devices, axis=0),
                        'label': np.repeat(feed_label, num_devices, axis=0)
383 384 385 386 387 388 389 390 391 392 393
                    },
                    fetch_list=[img.grad_name, loss.name])
            else:
                img_grad, loss_value = exe.run(
                    main_program,
                    feed={
                        'i': np.full((1), feed_i, np.int32),
                        'image': feed_img,
                        'label': feed_label
                    },
                    fetch_list=[img.grad_name, loss.name])
394

395
            numerical_grad = np.zeros(shape=[num_devices, 9], dtype=np.float32)
396 397 398
            feed_img_delta = np.copy(feed_img)
            for j in range(9):
                feed_img_delta[0][j] = feed_img[0][j] + delta
399 400
                if use_parallel_exe:
                    loss_delta = exe.run(feed={
401 402 403 404 405 406
                        'i':
                        np.full((num_devices), feed_i, np.int32),
                        'image':
                        np.repeat(feed_img_delta, num_devices, axis=0),
                        'label':
                        np.repeat(feed_label, num_devices, axis=0)
407 408
                    },
                                         fetch_list=[loss.name])
409 410
                    multi_device_grad = (loss_delta[0] -
                                         loss_value[0]) / delta / num_devices
411 412 413 414 415 416 417 418 419 420 421
                    for d in range(num_devices):
                        numerical_grad[d][j] = multi_device_grad[d]
                else:
                    loss_delta = exe.run(main_program,
                                         feed={
                                             'i': np.full((1), feed_i,
                                                          np.int32),
                                             'image': feed_img_delta,
                                             'label': feed_label
                                         },
                                         fetch_list=[loss.name])
422 423
                    numerical_grad[0][j] = (loss_delta[0] -
                                            loss_value[0]) / delta
424 425
                feed_img_delta[0][j] = feed_img[0][j]
            self.assertTrue(
426 427
                np.isclose(img_grad, numerical_grad, atol=0.05,
                           rtol=0.05).all())
428

429
    def add_optimizer_helper(self, cond_func, use_cuda, use_parallel_exe):
430 431 432 433 434 435 436 437 438 439 440 441 442
        """
        Test that program is runnable when add optimizer
        """
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 784], dtype='float32')
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)

443
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
444 445
        exe = fluid.Executor(place)
        exe.run(startup_program)
446 447
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
448 449 450
            exe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                         main_program=main_program,
                                         loss_name=loss.name)
451
            num_devices = exe.device_count
452 453 454

        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[16, 784]).astype(np.float32)
455 456 457 458
            feed_label = np.random.randint(low=0,
                                           high=10,
                                           size=[16, 1],
                                           dtype=np.int64)
459 460 461
            if use_parallel_exe:
                exe.run(feed={
                    'i': np.full((num_devices), feed_i, np.int32),
462 463
                    'image': np.repeat(feed_img, num_devices, axis=0),
                    'label': np.repeat(feed_label, num_devices, axis=0)
464 465 466 467 468 469 470 471 472 473
                },
                        fetch_list=[loss.name])
            else:
                exe.run(main_program,
                        feed={
                            'i': np.full((1), feed_i, np.int32),
                            'image': feed_img,
                            'label': feed_label
                        },
                        fetch_list=[loss])
474 475

    def test_cond_backward(self):
476

477 478
        def cond_func(i, img, label):
            predicate = ((i % 2) == 0)
479 480 481 482
            return layers.cond(
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
483

484
        for use_parallel_exe in [False, True]:
485 486 487 488 489 490
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

491
            self.backward_value_helper(cond_func, core.is_compiled_with_cuda(),
492
                                       use_parallel_exe)
493
            self.add_optimizer_helper(cond_func, core.is_compiled_with_cuda(),
494
                                      use_parallel_exe)
495 496

    def test_half_nested_cond_backward(self):
497

498
        def branch(i, img, label):
499 500 501 502
            return layers.cond(
                (i % 2) == 0,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
503 504 505 506 507 508 509 510 511

        def cond_func_simple_net_at_true(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label),
                               lambda: layers.mean(img))

        def cond_func_simple_net_at_false(i, img, label):
            return layers.cond(i < 5, lambda: layers.mean(img),
                               lambda: branch(i, img, label))

512
        for use_parallel_exe in [False, True]:
513 514 515 516 517 518
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

519 520 521 522 523 524 525 526 527 528 529 530
            self.backward_value_helper(cond_func_simple_net_at_true,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_true,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
            self.backward_value_helper(cond_func_simple_net_at_false,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_false,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
531 532

    def test_nested_cond_backward(self):
533

534 535 536 537 538
        def branch(i, img, label, mod_two):
            if mod_two:
                predicate = ((i % 2) == 0)
            else:
                predicate = ((i % 2) != 0)
539 540 541 542
            return layers.cond(
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10))
543 544 545 546 547

        def cond_func(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label, True),
                               lambda: branch(i, img, label, False))

548
        for use_parallel_exe in [False, True]:
549 550 551 552 553
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue
554
            self.backward_value_helper(cond_func, core.is_compiled_with_cuda(),
555
                                       use_parallel_exe)
556
            self.add_optimizer_helper(cond_func, core.is_compiled_with_cuda(),
557
                                      use_parallel_exe)
558 559


560
class TestCondWithError(unittest.TestCase):
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    def test_input_type_error(self):
        main_program = framework.Program()
        startup_program = framework.Program()
        with framework.program_guard(main_program, startup_program):
            pred = fluid.data(name='y', shape=[1], dtype='bool')

            def func():
                return pred

            with self.assertRaises(TypeError):
                layers.cond(None, func, func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, set())

            with self.assertRaises(TypeError):
                layers.cond(pred, set(), func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, func, set())


584 585
if __name__ == '__main__':
    unittest.main()