activation_kernel.cu 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/activation_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/backends/gpu/gpu_device_function.h"
19 20 21 22
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
23
#include "paddle/phi/kernels/impl/activation_grad_impl.h"
24
#include "paddle/phi/kernels/impl/activation_impl.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGPUImpl(const Context& dev_ctx,
                       const DenseTensor& x,
                       DenseTensor* out,
                       const Functor& functor) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          errors::NotFound("Output Out should not be nullptr"));
  dev_ctx.template Alloc<T>(out);
  std::vector<const DenseTensor*> ins = {&x};
  std::vector<DenseTensor*> outs = {out};
  funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
}

Y
YuanRisheng 已提交
41 42 43 44 45 46 47
#define DEFINE_GPU_ACTIVATION_KERNEL(name, functor_class)               \
  template <typename T, typename Context>                               \
  void name##Kernel(                                                    \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) { \
    funcs::functor_class<T> functor;                                    \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
48 49
  }

50 51 52 53 54 55 56 57 58 59 60 61
#define DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(name,           \
                                                           functor_class)  \
  template <typename T, typename Context>                                  \
  void name##Kernel(                                                       \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) {    \
    funcs::functor_class<T> functor;                                       \
    using U =                                                              \
        typename std::conditional_t<std::is_integral<T>::value, float, T>; \
    ActivationGPUImpl<U, Context, funcs::functor_class<T>>(                \
        dev_ctx, x, out, functor);                                         \
  }

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#define DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(name, functor_class, attr) \
  template <typename T, typename Context>                               \
  void name##Kernel(const Context& dev_ctx,                             \
                    const DenseTensor& x,                               \
                    float attr,                                         \
                    DenseTensor* out) {                                 \
    funcs::functor_class<T> functor;                                    \
    auto attrs = functor.GetAttrs();                                    \
    *(attrs[0].second) = attr;                                          \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>(             \
        dev_ctx, x, out, functor);                                      \
  }

#define DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(               \
    name, functor_class, attr1, attr2)                      \
  template <typename T, typename Context>                   \
  void name##Kernel(const Context& dev_ctx,                 \
                    const DenseTensor& x,                   \
                    float attr1,                            \
                    float attr2,                            \
                    DenseTensor* out) {                     \
    funcs::functor_class<T> functor;                        \
    auto attrs = functor.GetAttrs();                        \
    *(attrs[0].second) = attr1;                             \
    *(attrs[1].second) = attr2;                             \
    ActivationGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, x, out, functor);                          \
  }

Y
YuanRisheng 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
DEFINE_GPU_ACTIVATION_KERNEL(Cos, CudaCosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tan, CudaTanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acos, CudaAcosFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sin, CudaSinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asin, CudaAsinFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atan, CudaAtanFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sinh, CudaSinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Cosh, CudaCoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Asinh, CudaAsinhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Acosh, CudaAcoshFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Atanh, CudaAtanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Relu, CudaReluFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Tanh, CudaTanhFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(TanhShrink, CudaTanhShrinkFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Silu, CudaSiluFunctor)
106 107 108 109 110 111
DEFINE_GPU_ACTIVATION_KERNEL(Exp, CudaExpFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Expm1, CudaExpm1Functor)
DEFINE_GPU_ACTIVATION_KERNEL(Reciprocal, CudaReciprocalFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Square, CudaSquareFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Sqrt, CudaSqrtFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Rsqrt, CudaRsqrtFunctor)
112
DEFINE_GPU_ACTIVATION_KERNEL(Softsign, CudaSoftsignFunctor)
Y
YuanRisheng 已提交
113 114
DEFINE_GPU_ACTIVATION_KERNEL(Sigmoid, CudaSigmoidFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(LogSigmoid, CudaLogSigmoidFunctor)
Y
YuanRisheng 已提交
115 116 117
DEFINE_GPU_ACTIVATION_KERNEL(Round, CudaRoundFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Floor, CudaFloorFunctor)
DEFINE_GPU_ACTIVATION_KERNEL(Ceil, CudaCeilFunctor)
118

119 120 121 122 123
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log, CudaLogFunctor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log2, CudaLog2Functor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log10, CudaLog10Functor)
DEFINE_GPU_ACTIVATION_KERNEL_WITH_INT_IN_FLOAT_OUT(Log1p, CudaLog1pFunctor)

124
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LeakyRelu, CudaLeakyReluFunctor, alpha)
125
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(LogitCUDA, CudaLogitFunctor, eps)
126 127 128
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(ThresholdedRelu,
                                     CudaThresholdedReluFunctor,
                                     threshold)
129
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Relu6Raw, CudaRelu6Functor, threshold)
Y
YuanRisheng 已提交
130 131 132 133 134
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(HardShrink,
                                     CudaHardShrinkFunctor,
                                     threshold)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SoftShrink, CudaSoftShrinkFunctor, lambda)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Elu, CudaELUFunctor, alpha)
135
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(SwishRaw, CudaSwishFunctor, beta)
136
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Mish, CudaMishFunctor, threshold)
Y
YuanRisheng 已提交
137
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS(Celu, CudaCELUFunctor, alpha)
138

139 140 141 142
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardTanh,
                                     CudaHardTanhFunctor,
                                     t_min,
                                     t_max)
143 144 145 146 147
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Stanh, CudaSTanhFunctor, scale_a, scale_b)
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Softplus,
                                     CudaSoftplusFunctor,
                                     beta,
                                     threshold)
Y
YuanRisheng 已提交
148 149 150 151
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
                                     CudaHardSigmoidFunctor,
                                     slope,
                                     offset)
152
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Selu, CudaSeluFunctor, scale, alpha)
153

Y
YuanRisheng 已提交
154
template <typename T, typename Context>
155 156 157
void HardSwishKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     DenseTensor* out) {
Y
YuanRisheng 已提交
158
  funcs::CudaHardSwishFunctor<T> functor;
159 160 161
  float threshold = 6;
  float scale = 6;
  float offset = 3;
Y
YuanRisheng 已提交
162 163 164 165 166 167 168 169
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationGPUImpl<T, Context, funcs::CudaHardSwishFunctor<T>>(
      dev_ctx, x, out, functor);
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(relu,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#endif
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name,                        \
                     GPU,                         \
                     ALL_LAYOUT,                  \
                     phi::func,                   \
                     float,                       \
                     double,                      \
                     phi::dtype::float16,         \
                     phi::dtype::bfloat16) {}

PD_REGISTER_ACTIVATION_KERNEL(sin, SinKernel)
PD_REGISTER_ACTIVATION_KERNEL(cos, CosKernel)
PD_REGISTER_ACTIVATION_KERNEL(tan, TanKernel)
PD_REGISTER_ACTIVATION_KERNEL(acos, AcosKernel)
PD_REGISTER_ACTIVATION_KERNEL(asin, AsinKernel)
PD_REGISTER_ACTIVATION_KERNEL(atan, AtanKernel)
PD_REGISTER_ACTIVATION_KERNEL(sinh, SinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(cosh, CoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(asinh, AsinhKernel)
PD_REGISTER_ACTIVATION_KERNEL(acosh, AcoshKernel)
PD_REGISTER_ACTIVATION_KERNEL(atanh, AtanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(tanh, TanhKernel)
Z
zyfncg 已提交
213
PD_REGISTER_ACTIVATION_KERNEL(hardtanh, HardTanhKernel)
214
PD_REGISTER_ACTIVATION_KERNEL(thresholded_relu, ThresholdedReluKernel)
215
PD_REGISTER_ACTIVATION_KERNEL(relu6_raw, Relu6RawKernel)
216
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(stanh, StanhKernel)
PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel)
PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(rsqrt, RsqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(softplus, SoftplusKernel)

PD_REGISTER_KERNEL(exp,
                   GPU,
                   ALL_LAYOUT,
                   phi::ExpKernel,
                   float,
                   double,
                   int,
                   int64_t,
232 233
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
234 235 236 237 238 239
PD_REGISTER_KERNEL(expm1,
                   GPU,
                   ALL_LAYOUT,
                   phi::Expm1Kernel,
                   float,
                   double,
240 241
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
242 243 244 245 246 247 248 249 250 251
PD_REGISTER_KERNEL(square,
                   GPU,
                   ALL_LAYOUT,
                   phi::SquareKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
Y
YuanRisheng 已提交
252

Y
YuanRisheng 已提交
253
PD_REGISTER_ACTIVATION_KERNEL(hard_shrink, HardShrinkKernel)
254
PD_REGISTER_ACTIVATION_KERNEL(softshrink, SoftShrinkKernel)
Y
YuanRisheng 已提交
255 256 257
PD_REGISTER_ACTIVATION_KERNEL(tanh_shrink, TanhShrinkKernel)
PD_REGISTER_ACTIVATION_KERNEL(elu, EluKernel)
PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel)
258
PD_REGISTER_ACTIVATION_KERNEL(softsign, SoftsignKernel)
Y
YuanRisheng 已提交
259 260 261
PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(logsigmoid, LogSigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(hard_sigmoid, HardSigmoidKernel)
262
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
263
PD_REGISTER_ACTIVATION_KERNEL(swish_raw, SwishRawKernel)
Y
YuanRisheng 已提交
264 265 266
PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel)
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
PD_REGISTER_ACTIVATION_KERNEL(ceil, CeilKernel)
Y
YuanRisheng 已提交
267
PD_REGISTER_ACTIVATION_KERNEL(celu, CeluKernel)
268 269
PD_REGISTER_ACTIVATION_KERNEL(logit, LogitCUDAKernel)

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
PD_REGISTER_KERNEL(log,
                   GPU,
                   ALL_LAYOUT,
                   phi::LogKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(log2,
                   GPU,
                   ALL_LAYOUT,
                   phi::Log2Kernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(log10,
                   GPU,
                   ALL_LAYOUT,
                   phi::Log10Kernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(log1p,
                   GPU,
                   ALL_LAYOUT,
                   phi::Log1pKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
Y
YuanRisheng 已提交
310 311 312 313 314 315 316 317
PD_REGISTER_KERNEL(pow,
                   GPU,
                   ALL_LAYOUT,
                   phi::PowKernel,
                   float,
                   double,
                   int,
                   int64_t,
318 319 320 321 322 323 324 325
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(selu,
                   GPU,
                   ALL_LAYOUT,
                   phi::SeluKernel,
                   float,
                   double,
326
                   phi::dtype::float16,
327
                   phi::dtype::bfloat16) {}