op_gen.py 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import logging
17 18 19
import os

import yaml
20
from op_build_gen import gen_build_func_str
21 22 23
from op_interface_gen import (
    gen_exclusive_interface_str,
    gen_op_infer_meta_str,
C
Chen Zhiyang 已提交
24
    gen_op_vjp_str,
25
)
26
from op_member_func_gen import gen_op_get_inputs_outputs_str
27
from op_verify_gen import gen_verify_func_str
28 29 30 31
from vjp_interface_gen_op_list import (
    vjp_interface_declare_gen_op_list,
    vjp_interface_implementation_gen_op_list,
)
32 33 34 35 36 37 38 39 40 41 42 43

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
44
// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
45

46 47
#include <vector>

48 49
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
50
#include "paddle/ir/core/op_base.h"
51 52 53 54 55 56
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/utils.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/op_yaml_info_util.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/op_yaml_info.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/infermeta.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/vjp.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/trait/inplace.h"
H
hong 已提交
57 58
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
59
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h"
H
hong 已提交
60

61
{input}
62 63

{declare_type_id}
64 65 66 67 68 69
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

70 71 72 73
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

74 75 76 77 78 79 80
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
81
  static OpInfoTuple GetOpInfo();
82
  static void Build({build_args});
83
  {build_mutable_attr_is_input}
84
  {build_attr_num_over_1}
85
  void Verify();
86
{get_inputs_and_outputs}
H
hong 已提交
87
{exclusive_interface}
88 89 90 91 92 93 94 95 96 97 98 99
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

# =====================================
# String Template for cc file code gen
# =====================================
100
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
101
#include "{h_file}"
102 103
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_type.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
104 105
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
106
#include "paddle/ir/core/builtin_op.h"
107
#include "paddle/ir/core/ir_context.h"
108
#include "paddle/phi/core/enforce.h"
109 110 111 112 113 114 115
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
Z
zhangbo9674 已提交
116
#include "paddle/phi/infermeta/fusion.h"
117
#include "paddle/phi/api/lib/utils/allocator.h"
118 119
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
#include "paddle/ir/core/op_base.h"
120

121
{input}
122 123

{define_type_id}
124
"""
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# =====================================
# String Template for pd_op_vjp.cc file code gen
# =====================================
VJP_CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_op.h"
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
#include "paddle/fluid/primitive/type/lazy_tensor.h"
#include "paddle/ir/core/builtin_op.h"
#include "paddle/ir/core/op_base.h"
#include "paddle/phi/common/int_array.h"

namespace paddle {{
namespace dialect {{
{input}
}}  // namespace dialect
}}  // namespace paddle
"""
143 144 145 146 147

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

148
# get op info
149 150
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
151 152 153
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
154
  paddle::dialect::OpRunTimeInfo run_time_info = paddle::dialect::OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{{kernel_key_dtype}}}, {{{kernel_key_backend}}}, {{{inplace}}}, {{{view}}});
155
  return std::make_tuple(inputs, attributes, outputs, run_time_info, "{origin_op_name}");
156 157
}}
"""
158 159 160
CONSTRUCT_INPUT_INFO_TEMPLATE = """paddle::dialect::OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
CONSTRUCT_OUTPUT_INFO_TEMPLATE = """paddle::dialect::OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = """paddle::dialect::OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
161

162

163 164 165 166
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

167 168 169 170 171 172 173 174
scalar_type_maps = {
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}

175 176
_NO_NEED_GEN_OPS = {'add_n'}

177

178 179 180 181 182 183 184 185 186 187 188 189
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


190 191 192 193 194 195 196 197
def to_phi_and_fluid_grad_op_name(op_item):
    # Templat: sum_grad (reduce_sum_grad), sum_double_grad
    rtn = []
    all_names = op_item.split(', ')
    for name in all_names:
        backward_phi_name, backward_fluid_name = to_phi_and_fluid_op_name(name)
        rtn.append([backward_phi_name, backward_fluid_name])
    return rtn
198 199


200
# =====================================
201 202 203 204 205 206 207 208 209 210
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
211 212 213 214
            forward_phi_name, forward_fluid_name = to_phi_and_fluid_op_name(
                compat['op']
            )
            if op_name == forward_phi_name:
215
                return compat
216 217 218 219 220
            elif 'backward' in compat.keys():
                bkw_names = to_phi_and_fluid_grad_op_name(compat['backward'])
                for name in bkw_names:
                    if op_name == name[0]:
                        return compat
221 222 223 224 225
        return None


# =====================================
# Parse Op Information From Yaml
226 227
# =====================================
class OpInfoParser:
228
    def __init__(self, op_yaml_item, op_compat_item):
229
        self.op_yaml_item = op_yaml_item
230
        self.op_compat_item = op_compat_item
231
        self.op_phi_name = self.parse_op_phi_name()
232
        # parse inputs
233 234 235
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
236
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
237 238 239
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
240

241
        # parse outputs
242 243
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
244
        self.output_size_list = self.parse_output_size_list()
245
        self.output_optional_list = self.parse_output_optional_list()
246
        self.output_intermediate_list = self.parse_output_intermediate_list()
247 248 249 250 251
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
252

253
        # parse attributes
254 255 256
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
257 258
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
259 260
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
261 262
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
263
                'const std::vector<Scalar>&',
264
            ],
Z
zhangbo9674 已提交
265 266 267
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
268 269 270 271 272
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
273
                'const std::vector<float>&',
274 275 276 277 278
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
W
WangZhen 已提交
279
                'const std::vector<bool>&',
280
            ],
Y
YuanRisheng 已提交
281
            'str': ['ir::StrAttribute', 'const std::string&'],
282 283
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
284
                'const std::vector<std::string>&',
285
            ],
Y
YuanRisheng 已提交
286
            'Place': ['paddle::dialect::PlaceAttribute', 'const Place&'],
287 288 289 290 291 292
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
293
                'ir::ArrayAttribute<ir::Int64Attribute>',
294
                'const std::vector<int64_t>&',
295 296
            ],
            'int[]': [
Z
zhangbo9674 已提交
297
                'ir::ArrayAttribute<ir::Int32Attribute>',
298
                'const std::vector<int>&',
299 300
            ],
        }
301 302
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
303 304 305
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
C
Chen Zhiyang 已提交
306 307 308
        self.attribute_gen_arg_type_list = (
            self.parse_attribute_gen_arg_type_list()
        )
309
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
310 311 312
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
313 314
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

315 316 317 318 319 320
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

321 322 323 324 325 326 327 328
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

329 330 331
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
332
        if 'infer_meta' in self.op_yaml_item:
333
            self.infer_meta_func = self.op_yaml_item['infer_meta']["func"]
H
hong 已提交
334
        else:
335
            self.infer_meta_func = None
H
hong 已提交
336

337 338 339
        # parse backward name
        self.backward_name = self.parse_backward_name()

340 341 342 343
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

344 345 346
        # parse has_custom_verify
        self.custom_verify = self.parse_custom_verify()

347 348 349 350 351 352 353 354 355
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

356 357 358 359 360
    def parse_custom_verify(self):
        if 'custom_verify' in self.op_yaml_item:
            return self.op_yaml_item['custom_verify']
        return False

361
    def parse_op_phi_name(self):
362 363 364
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

380 381 382 383 384
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

385 386 387 388 389 390 391 392 393 394 395 396 397
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
398 399
                        scalar_attr == "depth"
                        and self.op_phi_name[0] == "one_hot"
400
                    ):
401
                        mutable_attribute_name_list.append("num_classes")
402
                    else:
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                        mutable_attribute_name_list.append(scalar_attr)
                    data_type = self.op_compat_item['scalar'][scalar_attr][
                        'data_type'
                    ]
                    # patch for isclose and allclose
                    if (self.op_compat_item['op'] == "isclose") or (
                        self.op_compat_item['op'] == "allclose"
                    ):
                        data_type = "float"
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            data_type,
                        ]
                    )
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )
        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
515 516 517 518
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
519 520
        return optional_list

521 522 523 524 525 526 527 528 529
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

530 531 532 533 534 535 536 537 538 539
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
540
            'SelectedRows': 'paddle::dialect::SelectedRowsType',
541 542 543 544 545 546 547 548 549
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

550 551 552 553 554 555 556 557 558
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

559 560 561 562
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
563 564 565 566
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
567
            else:
568
                optional_list.append("false")
569 570
        return optional_list

571 572 573 574 575 576 577 578 579 580 581 582
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

583 584 585 586 587 588
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
Y
YuanRisheng 已提交
603
                    temp_type = "const " + attribute_info['data_type'] + "&"
604 605 606
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

C
Chen Zhiyang 已提交
607 608 609 610 611 612 613 614 615 616 617
    def parse_attribute_gen_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            temp_type = self.attr_types_map[attribute_info['typename']][1]
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

618 619 620 621
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
622
                attribute_info['typename'] in self.attr_types_map
623
            ), f"{self.op_phi_name} : Attr type error."
624
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
625 626
        return type_list

627 628 629 630 631 632 633 634 635
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

636 637 638 639 640 641 642 643
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
644
            else:
645 646
                default_value_list.append(None)
        return default_value_list
647

648 649 650 651 652 653 654 655 656 657 658 659
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

660 661 662 663 664 665
    def parse_backward_name(self):
        if 'backward' in self.op_yaml_item:
            return self.op_yaml_item['backward']
        else:
            return None

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
684 685 686 687 688 689 690 691 692 693 694 695


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


def OpGenerator(
    op_yaml_files,
696
    op_compat_yaml_file,
697 698 699 700
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
701
    op_vjp_cc_file,
702 703 704 705 706 707 708 709
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
710 711
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

712 713 714 715 716
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
717
    op_info_items = {}
718
    for op in op_yaml_items:
719 720
        op_info_items[op['name']] = OpInfoParser(
            op, op_compat_parser.get_compat(op['name'])
721
        )
722 723 724 725
    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
726
    ops_vjp_defined_list = []  # all op vjp static interface defination
727
    for key, op_info in op_info_items.items():
728
        # get op inputs info
729 730 731
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
732
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
733
        # get op outputs info
734 735
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
736
        op_output_size_list = op_info.output_size_list
737
        op_output_optional_list = op_info.output_optional_list
738
        op_output_intermediate_list = op_info.output_intermediate_list
739 740 741 742
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
743 744
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
745
        op_attribute_data_type_list = op_info.attribute_data_type_list
746 747
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

764
        # others
765 766
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
767 768
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
769
        op_interfaces = ["paddle::dialect::OpYamlInfoInterface"]
770 771
        op_traits = []

772
        if op_info.infer_meta_func:
773
            op_interfaces += ["paddle::dialect::InferMetaInterface"]
774

775 776
        if (
            op_info.backward_name
777
            and op_info.op_phi_name[0] in vjp_interface_declare_gen_op_list
778
        ):
779
            op_interfaces += ["paddle::dialect::VjpInterface"]
780
        exclusive_interface_str = gen_exclusive_interface_str(op_info)
H
hong 已提交
781

782 783
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
784 785
            if op_name in _NO_NEED_GEN_OPS:
                continue
786 787 788
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

789 790 791
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
792 793 794
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
795 796

            if op_name[-1] == "_":
797
                op_traits += ["paddle::dialect::InplaceTrait"]
798

799 800 801 802
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

803 804 805
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
806 807 808 809 810
            op_get_inputs_outputs_str = gen_op_get_inputs_outputs_str(
                op_input_name_list,
                op_mutable_attribute_name_list,
                op_output_name_list,
            )
811

812 813 814 815 816 817
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
818 819
            build_attr_num_over_1 = ""
            build_func_with_attr_is_map = ""
820 821
            build_func_with_muta_attr_is_input = ""

822
            if op_infer_meta_map is not None:
823 824 825
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
826
                ) = gen_build_func_str(
827
                    op_class_name,
828
                    op_input_name_list,
829 830
                    op_input_type_list,
                    op_attribute_name_list,
831
                    op_attribute_type_list,
832 833
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
834
                    op_mutable_attribute_name_list,
835
                    op_mutable_attribute_type_list,
836
                    op_non_mutable_attribute_name_list,
837
                    op_non_mutable_attribute_type_list,
838 839
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
840 841 842 843
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
844
                    muta_attr_is_input=False,
845
                )
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
                if len(op_attribute_name_list) > 1:
                    (
                        build_args_with_attr_is_map_for_declare,
                        build_func_with_attr_is_map,
                    ) = gen_build_func_str(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_type_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=False,
                        attr_args_is_map=True,
                    )
                    build_attr_num_over_1 = (
                        "static void Build({build_args});".format(
                            build_args=build_args_with_attr_is_map_for_declare
                        )
                    )

877
                if len(op_mutable_attribute_name_list) > 0:
878 879 880
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
881
                    ) = gen_build_func_str(
882 883 884 885
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
886
                        op_attribute_type_list,
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
905

906
            # gen op_declare_str/op_defined_str
907
            if len(op_non_mutable_attribute_name_list) == 0:
908 909 910 911 912 913 914
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
915 916
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
917
                    build_attr_num_over_1=build_attr_num_over_1,
918
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
919
                    exclusive_interface=exclusive_interface_str,
920 921 922 923 924 925 926 927 928
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
929
                        attribute_num=len(op_non_mutable_attribute_name_list)
930
                    ),
931
                    attribute_num=len(op_non_mutable_attribute_name_list),
932 933
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
934
                    build_attr_num_over_1=build_attr_num_over_1,
935
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
936
                    exclusive_interface=exclusive_interface_str,
937 938
                )
                attribute_names_str = (
939
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
940 941 942
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
943
                    attribute_num=len(op_non_mutable_attribute_name_list),
944 945
                    attribute_names=attribute_names_str,
                )
946

947 948 949
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
950
            # generate get op info funciton: inputs
951
            input_info_list = []
952 953 954 955 956 957 958 959
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
960
                    )
961 962 963 964 965 966 967 968 969
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
970
                    )
971 972 973 974 975
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
976 977 978 979 980 981 982 983 984 985 986 987
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
988
                    )
989 990 991
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
992
            if len(op_non_mutable_attribute_name_list) > 0:
993
                attribute_info_list = []
994
                for idx in range(len(op_non_mutable_attribute_name_list)):
995 996
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
997 998 999 1000 1001
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1002
                        )
1003
                    )
1004
                attribute_info_str = ", ".join(attribute_info_list)
1005 1006 1007 1008 1009 1010
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
1011

1012 1013
            kernel_func_str = ""
            kernel_param_str = ""
1014
            kernel_key_dtype = ""
1015
            kernel_key_backend = ""
1016 1017 1018
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
1019 1020 1021 1022
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1023 1024
                    if kernel_key_dtype != "":
                        kernel_key_dtype = '"' + kernel_key_dtype + '"'
1025 1026 1027 1028 1029 1030
                if 'backend' in op_kernel_map and op_kernel_map['backend']:
                    kernel_key_backend = '", "'.join(
                        op_kernel_map['backend']['candidates']
                    )
                    if kernel_key_backend != "":
                        kernel_key_backend = '"' + kernel_key_backend + '"'
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1044 1045 1046 1047 1048
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1049 1050 1051 1052
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1053
                kernel_key_dtype=kernel_key_dtype,
1054
                kernel_key_backend=kernel_key_backend,
1055 1056
                inplace=inplace_str,
                view=view_str,
1057
                origin_op_name=op_info.op_yaml_item['name'],
1058
            )
1059

1060
            # generate op verify function str
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
            op_verify_str = ''
            if not op_info.custom_verify:
                op_verify_str = gen_verify_func_str(
                    op_class_name,
                    op_input_type_list,
                    op_input_optional_list,
                    op_mutable_attribute_name_list,
                    op_mutable_attribute_type_list,
                    op_non_mutable_attribute_name_list,
                    op_non_mutable_attribute_type_list,
                    op_output_type_list,
                    op_output_optional_list,
                )
1074

1075
            op_infer_meta_str = gen_op_infer_meta_str(op_info, op_class_name)
H
hong 已提交
1076

1077 1078 1079 1080 1081 1082
            # =================================== #
            #         gen Vjp func str      #
            # =================================== #

            # generate op vjp function str

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            op_vjp_str = ''
            if dialect_name == "cinn":
                logging.warning("cinn is currently not support Vjp function")
            else:
                # TODO(chenzhiyang) add vjp gen code
                if (
                    op_info.backward_name
                    and op_info.op_phi_name[0]
                    in vjp_interface_implementation_gen_op_list
                ):
                    op_vjp_str = gen_op_vjp_str(
                        op_class_name,
                        op_info.backward_name,
                        op_name,
                        op_info_items[op_info.op_phi_name[0]],
                        op_info_items[op_info.backward_name],
                    )
1100

1101 1102 1103 1104
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1105
            ops_defined_list.append(build_func_with_muta_attr_not_input)
1106
            ops_defined_list.append(build_func_with_attr_is_map)
1107 1108
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1109
            ops_defined_list.append(op_verify_str)
1110
            ops_defined_list.append(op_infer_meta_str)
1111 1112
            # NOTE(chenxi67)skip if dialect_name==cinn
            if dialect_name == "cinn":
1113
                pass
1114
            else:
1115
                ops_vjp_defined_list.append(op_vjp_str)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1127 1128 1129 1130 1131

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1132 1133 1134 1135 1136 1137 1138
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1139 1140 1141
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1142 1143 1144 1145 1146 1147 1148 1149
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1150 1151 1152 1153 1154

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1155
    source_file_str = CC_FILE_TEMPLATE.format(
1156 1157 1158
        h_file=op_def_h_file[:-4],
        input=source_file_str,
        define_type_id=define_type_id_str,
1159 1160
    )  # Add head

1161 1162 1163
    vjp_source_file_str = VJP_CC_FILE_TEMPLATE.format(
        input="".join(ops_vjp_defined_list)
    )
1164
    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
1165
    with open(op_def_h_file, 'w') as f:
1166
        f.write(head_file_str)
1167
    with open(op_def_cc_file, 'w') as f:
1168
        f.write(source_file_str)
1169 1170 1171 1172 1173
    # NOTE(Aurelius84): op_gen.py is called multiply times,
    # and vjp is only avaible for pd dialect.
    if dialect_name != 'cinn' and op_vjp_cc_file:
        with open(op_vjp_cc_file, 'w') as f:
            f.write(vjp_source_file_str)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
1189
    parser.add_argument('--op_vjp_cc_file', type=str)
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file
1207
    op_vjp_cc_file = args.op_vjp_cc_file
1208 1209 1210 1211

    # auto code generate
    OpGenerator(
        op_yaml_files,
1212
        op_compat_yaml_file,
1213 1214 1215 1216
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
1217
        op_vjp_cc_file,
1218
    )