ContextProjectionOp.cpp 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ContextProjectionOp.h"
16 17 18 19
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {
X
xutianbing 已提交
20 21 22 23
/**
 * Context Projection Forward with CPU Matrix Device.
 *
 */
24
template <>
25 26 27
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
                                               const CpuMatrix& input_mat,
                                               const CpuMatrix& weight_mat,
28
                                               const CpuIVector& seq_vec,
29 30
                                               size_t context_length,
                                               int context_start,
31
                                               size_t begin_pad) {
32 33 34 35 36 37 38 39 40 41 42
  const int* starts = seq_vec.getData();
  const size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
43 44 45 46 47
        MatrixPtr mat = out_mat.subMatrix(starts[i], pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat).subMatrix(j, pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
48 49 50 51 52 53 54
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
55 56 57 58 59 60 61
        MatrixPtr mat = out_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat)
                  .subMatrix(begin_pad + context_start + j - pad_size,
                             pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
62 63 64 65 66
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
67 68 69 70
      MatrixPtr src =
          const_cast<CpuMatrix&>(input_mat).subMatrix(begin, end - begin);
      MatrixPtr dst = out_mat.subMatrix(dst_begin, dst_end - dst_begin);
      dst->addAtOffset(*src, j * input_mat.getWidth());
71 72 73 74 75
    }
  }
}

/**
X
xutianbing 已提交
76
 * Paddle Function for Context Projection Forward.
X
xutianbing 已提交
77
 * Calculate the output layer value sequence after context projection.
X
xutianbing 已提交
78
 *
X
xutianbing 已提交
79
 * What is Context Projection for a sequence?
X
xutianbing 已提交
80 81 82
 * For example, assumed input (x) has 4 words and the dimension of each word
 * representation is 2. If we use zero to pad instead of learned weight to pad,
 * and the context_lenth is 3, the output (y) is:
83
 *
X
xutianbing 已提交
84 85 86 87 88 89 90 91 92 93 94
 * @code
 *  x = [a1, a2;
 *       b1, b2;
 *       c1, c2;
 *       d1, d2]
 *  y = [0,  0,  a1, a2, b1, b2;
 *       a1, a2, b1, b2, c1, c2;
 *       b1, b2, c1, c2, d1, d2;
 *       c1, c2, d1, d2, 0,  0]
 * @endcode
 *
X
xutianbing 已提交
95 96 97 98 99
 * \param outputs[0].matrix   output layer value, n * (d * l)
 * \param outputs[0].vector   start position sequence, n * 1
 * \param inputs[0].matrix    input layer value, n * d
 * \param inputs[0].vector    start position sequence, n * 1
 * \param inputs[1].matrix    input layer weight, pad * d
100 101 102 103 104 105 106 107 108 109
 */
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
  }

110
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
111 112
    CHECK(1UL == inputs.size() || 2UL == inputs.size());
    CHECK_EQ(1UL, outputs.size());
X
xutianbing 已提交
113 114
    CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
        << "SequenceArg required here";
115
    const auto val_seqs = dynamic_cast<const SequenceArg&>(inputs[0]);
X
xutianbing 已提交
116
    auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
117

118
    CHECK(out_seq.data() && val_seqs.data() && val_seqs.getSequenceId().data());
119 120
    CHECK_EQ(out_seq.shape().ndims(), 2UL);
    CHECK_EQ(val_seqs.shape().ndims(), 2UL);
121
    /// dim of output = dim of input * context_length
X
xutianbing 已提交
122
    CHECK_EQ(out_seq.shape()[1], val_seqs.shape()[1] * context_length_);
123
    /// input and output has the same batch_size
X
xutianbing 已提交
124
    CHECK_EQ(val_seqs.shape()[0], out_seq.shape()[0]);
125 126 127
    if (2UL == inputs.size()) {
      CHECK_EQ(inputs[1].shape().ndims(), 2UL);
      /// dim of input == dim of weight
X
xutianbing 已提交
128
      CHECK_EQ(val_seqs.shape()[1], inputs[1].shape()[1]);
129
    }
130

X
xutianbing 已提交
131 132
    CHECK_EQ(out_seq.getArgType(), ADD_TO);
    auto out_mat = out_seq.matrix<Device>();
133
    const auto in_mat = val_seqs.matrix<Device>();
134
    const auto w_mat =
X
xutianbing 已提交
135
        (2UL == inputs.size() && inputs[1].data())
X
xutianbing 已提交
136 137
            ? inputs[1].matrix<Device>()
            : typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
138
    const auto seq_vec = val_seqs.getSequenceId().vector<int, Device>();
139

140 141 142
    ContextProjectionForward<Device>(out_mat,
                                     in_mat,
                                     w_mat,
143
                                     seq_vec,
144 145
                                     context_length_,
                                     context_start_,
146
                                     begin_pad_);
147 148 149 150 151 152 153 154
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
};

X
xutianbing 已提交
155 156 157 158
/**
 * Context Projection Backward with CPU Matrix Device.
 *
 */
159
template <>
160
void ContextProjectionBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad_mat,
161 162
                                                CpuMatrix& in_grad_mat,
                                                CpuMatrix& w_grad_mat,
163
                                                const CpuIVector& seq_vec,
164 165 166
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
167 168
                                                bool is_padding,
                                                size_t total_pad) {
169 170
  size_t input_dim = in_grad_mat ? in_grad_mat.getWidth()
                                 : w_grad_mat ? w_grad_mat.getWidth() : 0;
171 172 173 174 175 176 177 178 179 180 181 182
  const int* starts = seq_vec.getData();
  size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
183 184
          MatrixPtr mat = const_cast<CpuMatrix&>(out_grad_mat)
                              .subMatrix(starts[i], pad_size);
185
          MatrixPtr sub = w_grad_mat.subMatrix(j, pad_size);
186 187 188 189 190 191 192 193 194
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
195 196
          MatrixPtr mat = const_cast<CpuMatrix&>(out_grad_mat)
                              .subMatrix(starts[i + 1] - pad_size, pad_size);
197
          MatrixPtr sub = w_grad_mat.subMatrix(
198 199 200 201 202 203 204 205
              begin_pad + context_start + j - pad_size, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      if (!in_grad_mat) continue;
206
      MatrixPtr src = in_grad_mat.subMatrix(begin, end - begin);
207 208
      MatrixPtr dst = const_cast<CpuMatrix&>(out_grad_mat)
                          .subMatrix(dst_begin, dst_end - dst_begin);
209 210 211 212 213 214
      src->addAtOffset(*dst, j * input_dim);
    }
  }
}

/**
X
xutianbing 已提交
215 216 217
 * Context Projection Backward Function.
 * Update the weight gradient and input layer gradient with backprop
 *
X
xutianbing 已提交
218 219 220 221 222
 * \param inputs[0].matrix          output layer grad, n * (d * l)
 * \param inputs[0].vector          start position sequence, n * 1
 * \param outputs[0].matrix         input layer grad, n * d
 * \param outputs[0].vector         start position sequence, n * 1
 * \param outputs[1]                weight grad, pad * d
223 224 225 226 227 228 229 230 231
 */
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    is_padding_ = config.get<bool>("is_padding");
232
    total_pad_ = config.get<size_t>("total_pad");
233 234
  }

235
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
236 237
    CHECK_EQ(1UL, inputs.size());
    CHECK(1UL == outputs.size() || 2UL == outputs.size());
X
xutianbing 已提交
238 239 240 241
    CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
        << "SequenceArg required here";
    const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
    auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
242
    CHECK(in_seq.data() && in_seq.getSequenceId().data());
243 244 245
    CHECK_EQ(in_seq.shape().ndims(), 2UL);
    CHECK_EQ(out_seq.shape().ndims(), 2UL);
    CHECK_EQ(out_seq.getSequenceId().shape().ndims(), 1UL);
246

247
    /// input and output grad has the same batch_size
X
xutianbing 已提交
248 249 250 251
    CHECK_EQ(out_seq.shape()[0], in_seq.shape()[0]);
    /// dim of output grad = dim of input grad * context_length
    CHECK_EQ(in_seq.shape()[1], out_seq.shape()[1] * context_length_);
    CHECK_EQ(out_seq.getArgType(), ADD_TO);
252 253 254 255 256 257 258

    if (2UL == outputs.size()) {
      CHECK_EQ(outputs[1].shape().ndims(), 2UL);
      /// dim of input grad == dim of weight
      CHECK_EQ(out_seq.shape()[1], outputs[1].shape()[1]);
      CHECK_EQ(outputs[1].getArgType(), ADD_TO);
    }
259

260
    const auto seq_vec = in_seq.getSequenceId().vector<int, Device>();
X
xutianbing 已提交
261
    const auto out_grad_mat = in_seq.matrix<Device>();
262
    auto in_grad_mat =
X
xutianbing 已提交
263 264
        !out_seq.data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                        : out_seq.matrix<Device>();
265
    auto w_grad_mat =
X
xutianbing 已提交
266
        (2UL == outputs.size() && outputs[1].data())
267 268 269
            ? outputs[1].matrix<Device>()
            : typename Tensor<real, Device>::Matrix(nullptr, 0, 0);

270 271 272
    ContextProjectionBackward<Device>(out_grad_mat,
                                      in_grad_mat,
                                      w_grad_mat,
273
                                      seq_vec,
274 275 276
                                      context_length_,
                                      context_start_,
                                      begin_pad_,
277 278
                                      is_padding_,
                                      total_pad_);
279 280 281 282 283 284 285
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  bool is_padding_;
286
  size_t total_pad_;
287 288 289
};

/**
X
xutianbing 已提交
290 291 292 293 294 295 296 297 298
 * Context Projection Backward Data Function
 * Update input layer grad
 * input:  sequence of output layer grad
 * output: sequence of input layer grad
 *
 * \param outputs[0].matrix              input layer grad, n * d
 * \param outputs[0].vector              start position sequence, n * 1
 * \param inputs[0].matrix               output layer grad, n * (d * l)
 * \param inputs[0].vector               start positon sequence, n * 1
299 300 301 302 303 304 305 306 307
 */
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
  }

308
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
309 310
    CHECK_EQ(1UL, inputs.size());
    CHECK_EQ(1UL, outputs.size());
X
xutianbing 已提交
311 312 313 314 315
    CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
        << "SequenceArg required here";
    const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
    const auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);

316
    CHECK(in_seq.data() && out_seq.data() && in_seq.getSequenceId().data());
317 318 319
    CHECK_EQ(out_seq.shape().ndims(), 2UL);
    CHECK_EQ(in_seq.shape().ndims(), 2UL);
    CHECK_EQ(in_seq.getSequenceId().shape().ndims(), 1UL);
X
xutianbing 已提交
320 321
    /// output layer grad dim == input layer grad dim * context_length_
    CHECK_EQ(in_seq.shape().ndims(), out_seq.shape().ndims() * context_length_);
322
    /// input and output has the same batch_size
X
xutianbing 已提交
323 324
    CHECK_EQ(in_seq.shape()[0], out_seq.shape()[0]);
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
325

X
xutianbing 已提交
326
    const auto out_grad_mat = in_seq.matrix<Device>();
327
    const auto seq_vec = in_seq.getSequenceId().vector<int, Device>();
X
xutianbing 已提交
328
    auto in_grad_mat = out_seq.matrix<Device>();
329

330 331
    ContextProjectionBackwardData<Device>(
        out_grad_mat, in_grad_mat, seq_vec, context_length_, context_start_);
332 333 334 335 336 337 338 339
  }

private:
  size_t context_length_;
  int context_start_;
};

/**
X
xutianbing 已提交
340 341 342 343 344 345 346 347
 * Context Projection Backward Weight Function
 * Update weight grad by backprop
 * input:  sequence of output layer grad
 * output: weight grad
 *
 * \param outputs[0]                   weight grad, pad * d
 * \param inputs[0].matrix             output layer grad, n * (d * l)
 * \param inputs[0].vecotr             start positon sequence, n * 1
348 349 350 351 352 353 354 355 356 357 358
 */
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    total_pad_ = config.get<size_t>("total_pad");
  }

359
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
360 361
    CHECK_EQ(1UL, inputs.size());
    CHECK_EQ(1UL, outputs.size());
X
xutianbing 已提交
362 363
    CHECK(inputs[0].isSequenceArg()) << "SequenceArg required here";
    const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
364
    CHECK(in_seq.data() && in_seq.getSequenceId().data() && outputs[0].data());
365 366 367
    CHECK_EQ(outputs[0].shape().ndims(), 2UL);
    CHECK_EQ(in_seq.shape().ndims(), 2UL);
    CHECK_EQ(in_seq.getSequenceId().shape().ndims(), 1UL);
X
xutianbing 已提交
368 369 370 371
    CHECK_EQ(in_seq.shape()[0], outputs[0].shape()[0]);
    /// output layer grad dim == weight dim * context_length_
    CHECK_EQ(in_seq.shape()[1], outputs[0].shape()[1] * context_length_);
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
372

373
    const auto seq_vec = in_seq.getSequenceId().vector<int, Device>();
X
xutianbing 已提交
374 375
    const auto out_grad_mat = in_seq.matrix<Device>();
    auto w_grad_mat = outputs[0].matrix<Device>();
376 377
    ContextProjectionBackwardWeight<Device>(out_grad_mat,
                                            w_grad_mat,
378
                                            seq_vec,
379 380 381 382 383 384 385 386 387 388 389 390 391
                                            context_length_,
                                            context_start_,
                                            total_pad_,
                                            begin_pad_);
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  size_t total_pad_;
};

392 393 394
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    CPU,
                    ContextProjectionForwardFunc);
395 396 397
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    CPU,
                    ContextProjectionBackwardFunc);
398 399 400 401
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    GPU,
                    ContextProjectionForwardFunc);
402 403 404
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    GPU,
                    ContextProjectionBackwardFunc);
405 406 407 408 409 410
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
                    GPU,
                    ContextProjectionBackwardDataFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
                    GPU,
                    ContextProjectionBackwardWeightFunc);
411 412
#endif
}  // namespace paddle