ContextProjectionOp.cpp 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ContextProjectionOp.h"
16 17 18 19 20 21
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {

template <>
22 23 24
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
                                               const CpuMatrix& input_mat,
                                               const CpuMatrix& weight_mat,
25
                                               const CpuIVector& seq_vec,
26 27
                                               size_t context_length,
                                               int context_start,
28
                                               size_t begin_pad) {
29 30 31 32 33 34 35 36 37 38 39
  const int* starts = seq_vec.getData();
  const size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
40 41 42 43 44
        MatrixPtr mat = out_mat.subMatrix(starts[i], pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat).subMatrix(j, pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
45 46 47 48 49 50 51
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
52 53 54 55 56 57 58
        MatrixPtr mat = out_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat)
                  .subMatrix(begin_pad + context_start + j - pad_size,
                             pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
59 60 61 62 63
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
64 65 66 67
      MatrixPtr src =
          const_cast<CpuMatrix&>(input_mat).subMatrix(begin, end - begin);
      MatrixPtr dst = out_mat.subMatrix(dst_begin, dst_end - dst_begin);
      dst->addAtOffset(*src, j * input_mat.getWidth());
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    }
  }
}

/**
 * \param inputs[0] input value.
 * \param inputs[1] input weight.
 * \param inputs[2] input sequence.
 * \param outputs[0] output value.
 */
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
  }

87
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
88 89
    CHECK_EQ((size_t)3, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
90

91
    CHECK(outputs[0].data() && inputs[0].data() && inputs[2].data());
92 93 94 95
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
96
    /// dim of output = dim of input * context_length
97
    CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
98
    /// dim of input == dim of weight
99
    CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
100
    /// input and output has the same batch_size
101 102
    CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);

103
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
104 105 106 107 108 109 110 111 112
    auto out_mat = outputs[0].matrix<Device>();
    auto in_mat = inputs[0].matrix<Device>();
    auto w_mat = !inputs[1].data()
                     ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                     : inputs[1].matrix<Device>();
    auto seq_vec = inputs[2].vector<int, Device>();
    ContextProjectionForward<Device>(out_mat,
                                     in_mat,
                                     w_mat,
113
                                     seq_vec,
114 115
                                     context_length_,
                                     context_start_,
116
                                     begin_pad_);
117 118 119 120 121 122 123 124
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
};

125
template <>
126 127 128
void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix& out_grad_mat,
                                                CpuMatrix& in_grad_mat,
                                                CpuMatrix& w_grad_mat,
129
                                                const CpuIVector& seq_vec,
130 131 132
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
133 134
                                                bool is_padding,
                                                size_t total_pad) {
135 136
  size_t input_dim = in_grad_mat ? in_grad_mat.getWidth()
                                 : w_grad_mat ? w_grad_mat.getWidth() : 0;
137 138 139 140 141 142 143 144 145 146 147 148
  const int* starts = seq_vec.getData();
  size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
149 150
          MatrixPtr mat = out_grad_mat.subMatrix(starts[i], pad_size);
          MatrixPtr sub = w_grad_mat.subMatrix(j, pad_size);
151 152 153 154 155 156 157 158 159 160
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
          MatrixPtr mat =
161 162
              out_grad_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
          MatrixPtr sub = w_grad_mat.subMatrix(
163 164 165 166 167 168 169 170
              begin_pad + context_start + j - pad_size, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      if (!in_grad_mat) continue;
171 172
      MatrixPtr src = in_grad_mat.subMatrix(begin, end - begin);
      MatrixPtr dst = out_grad_mat.subMatrix(dst_begin, dst_end - dst_begin);
173 174 175 176 177 178
      src->addAtOffset(*dst, j * input_dim);
    }
  }
}

/**
179 180
 * \param inputs[0] input grad.
 * \param inputs[1] weight grad.
181 182 183 184 185 186 187 188 189 190 191
 * \param inputs[2] input sequence.
 * \param outputs[0] output value.
 */
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    is_padding_ = config.get<bool>("is_padding");
192
    total_pad_ = config.get<size_t>("total_pad");
193 194
  }

195
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
196 197
    CHECK_EQ((size_t)3, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
198

199
    CHECK(outputs[0].data() && inputs[2].data());
200 201 202 203
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
204 205

    /// dim of input == dim of weight
206
    CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
207
    /// input and output has the same batch_size
208
    CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
209
    /// dim of output = dim of input * context_length
210
    CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
211

212 213
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);

214
    auto out_grad_mat = outputs[0].matrix<Device>();
215
    auto in_grad_mat =
216 217 218 219 220 221 222 223 224
        !inputs[0].data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                          : inputs[0].matrix<Device>();
    auto w_grad_mat = !inputs[1].data()
                          ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                          : inputs[1].matrix<Device>();
    auto seq_vec = inputs[2].vector<int, Device>();
    ContextProjectionBackward<Device>(out_grad_mat,
                                      in_grad_mat,
                                      w_grad_mat,
225
                                      seq_vec,
226 227 228
                                      context_length_,
                                      context_start_,
                                      begin_pad_,
229 230
                                      is_padding_,
                                      total_pad_);
231 232 233 234 235 236 237
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  bool is_padding_;
238
  size_t total_pad_;
239 240
};

241
#if 0
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/**
 * \param inputs[0] input grad.
 * \param inputs[1] input sequence.
 * \param outputs[0] output grad.
 */
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
L
liaogang 已提交
258 259 260
    CHECK_EQ(2, static_cast<int>(inputs.size()));
    CHECK_EQ(1, static_cast<int>(outputs.size()));
    CHECK_EQ(0, static_cast<int>(inouts.size()));
261
    CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
L
liaogang 已提交
262 263 264
    CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
    CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
    CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
265 266 267
    CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
    /// input and output has the same batch_size
    CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
268

269 270 271 272 273 274 275 276 277 278
    auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    const auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    typename SequenceT<Device>::type seq_vec(
        inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));

    ContextProjectionBackwardData<Device>(out_grad_mat.get(),
                                          in_grad_mat.get(),
                                          seq_vec,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
                                          context_length_,
                                          context_start_);
  }

private:
  size_t context_length_;
  int context_start_;
};

/**
 * \param inputs[0] weight grad.
 * \param inputs[1] input sequence.
 * \param outputs[0] output grad.
 */
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    total_pad_ = config.get<size_t>("total_pad");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
L
liaogang 已提交
306 307 308
    CHECK_EQ(2, static_cast<int>(inputs.size()));
    CHECK_EQ(1, static_cast<int>(outputs.size()));
    CHECK_EQ(0, static_cast<int>(inouts.size()));
309

310
    CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
L
liaogang 已提交
311 312 313
    CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
    CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
    CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
314 315 316 317 318 319 320 321 322 323 324 325
    CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);

    auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    typename SequenceT<Device>::type seq_vec(
        inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));

    ContextProjectionBackwardWeight<Device>(out_grad_mat.get(),
                                            w_grad_mat.get(),
                                            seq_vec,
326 327 328 329 330 331 332 333 334 335 336 337
                                            context_length_,
                                            context_start_,
                                            total_pad_,
                                            begin_pad_);
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  size_t total_pad_;
};
338
#endif
339

340 341 342
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    CPU,
                    ContextProjectionForwardFunc);
343 344 345
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    CPU,
                    ContextProjectionBackwardFunc);
346 347 348 349
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    GPU,
                    ContextProjectionForwardFunc);
350 351 352
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    GPU,
                    ContextProjectionBackwardFunc);
353
#if 0
354 355 356 357 358 359
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
                    GPU,
                    ContextProjectionBackwardDataFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
                    GPU,
                    ContextProjectionBackwardWeightFunc);
360
#endif
361
#endif
362
}  // namespace paddle