Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1251501c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1251501c
编写于
1月 24, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rewrite unit test using new Function Test.
上级
c785975b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
185 addition
and
174 deletion
+185
-174
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+2
-1
paddle/function/ContextProjectionOp.cpp
paddle/function/ContextProjectionOp.cpp
+36
-34
paddle/function/ContextProjectionOp.h
paddle/function/ContextProjectionOp.h
+0
-1
paddle/function/ContextProjectionOpTest.cpp
paddle/function/ContextProjectionOpTest.cpp
+39
-100
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+108
-38
未找到文件。
paddle/function/BufferArg.h
浏览文件 @
1251501c
...
...
@@ -226,7 +226,8 @@ public:
SequenceArg
(
ValueType
valueType
,
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
valueType
,
shape
,
argType
),
startPositions_
(
TensorShape
())
{
:
BufferArg
(
valueType
,
shape
,
argType
),
startPositions_
(
TensorShape
({
shape
[
0
]}))
{
bufferType_
=
TENSOR_SEQUENCE_DATA
;
}
...
...
paddle/function/ContextProjectionOp.cpp
浏览文件 @
1251501c
...
...
@@ -108,26 +108,23 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK
(
1
==
inputs
.
size
()
||
2
==
inputs
.
size
());
CHECK_EQ
(
(
size_t
)
1
,
outputs
.
size
());
CHECK
(
1
UL
==
inputs
.
size
()
||
2UL
==
inputs
.
size
());
CHECK_EQ
(
1UL
,
outputs
.
size
());
CHECK
(
inputs
[
0
].
isSequenceArg
()
&&
outputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
val_seqs
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
out_seq
.
data
()
&&
val_seqs
.
data
()
&&
val_seqs
.
getSequenceId
().
data
());
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
val_seqs
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
val_seqs
.
getSequenceId
().
shape
().
ndims
(),
(
size_t
)
1
);
if
(
2
==
inputs
.
size
())
{
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
}
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
val_seqs
.
shape
().
ndims
(),
2UL
);
/// dim of output = dim of input * context_length
CHECK_EQ
(
out_seq
.
shape
()[
1
],
val_seqs
.
shape
()[
1
]
*
context_length_
);
/// input and output has the same batch_size
CHECK_EQ
(
val_seqs
.
shape
()[
0
],
out_seq
.
shape
()[
0
]);
/// dim of input == dim of weight
if
(
2
==
inputs
.
size
())
{
if
(
2UL
==
inputs
.
size
())
{
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
2UL
);
/// dim of input == dim of weight
CHECK_EQ
(
val_seqs
.
shape
()[
1
],
inputs
[
1
].
shape
()[
1
]);
}
...
...
@@ -135,10 +132,11 @@ public:
auto
out_mat
=
out_seq
.
matrix
<
Device
>
();
const
auto
in_mat
=
val_seqs
.
matrix
<
Device
>
();
const
auto
w_mat
=
(
2
==
inputs
.
size
())
(
2
UL
==
inputs
.
size
())
?
inputs
[
1
].
matrix
<
Device
>
()
:
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
);
const
auto
seq_vec
=
val_seqs
.
getSequenceId
().
vector
<
int
,
Device
>
();
ContextProjectionForward
<
Device
>
(
out_mat
,
in_mat
,
w_mat
,
...
...
@@ -235,36 +233,40 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
(
size_t
)
1
,
inputs
.
size
());
CHECK
_EQ
((
size_t
)
2
,
outputs
.
size
());
CHECK_EQ
(
1UL
,
inputs
.
size
());
CHECK
(
1UL
==
outputs
.
size
()
||
2UL
==
outputs
.
size
());
CHECK
(
inputs
[
0
].
isSequenceArg
()
&&
outputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceId
().
data
());
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
in_seq
.
getSequenceId
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
out_seq
.
getSequenceId
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
outputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
out_seq
.
getSequenceId
().
shape
().
ndims
(),
1UL
);
/// dim of input grad == dim of weight
CHECK_EQ
(
out_seq
.
shape
()[
1
],
outputs
[
1
].
shape
()[
1
]);
/// input and output grad has the same batch_size
CHECK_EQ
(
out_seq
.
shape
()[
0
],
in_seq
.
shape
()[
0
]);
/// dim of output grad = dim of input grad * context_length
CHECK_EQ
(
in_seq
.
shape
()[
1
],
out_seq
.
shape
()[
1
]
*
context_length_
);
CHECK_EQ
(
out_seq
.
getArgType
(),
ADD_TO
);
CHECK_EQ
(
outputs
[
1
].
getArgType
(),
ADD_TO
);
if
(
2UL
==
outputs
.
size
())
{
CHECK_EQ
(
outputs
[
1
].
shape
().
ndims
(),
2UL
);
/// dim of input grad == dim of weight
CHECK_EQ
(
out_seq
.
shape
()[
1
],
outputs
[
1
].
shape
()[
1
]);
CHECK_EQ
(
outputs
[
1
].
getArgType
(),
ADD_TO
);
}
const
auto
seq_vec
=
in_seq
.
getSequenceId
().
vector
<
int
,
Device
>
();
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
auto
in_grad_mat
=
!
out_seq
.
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
:
out_seq
.
matrix
<
Device
>
();
auto
w_grad_mat
=
!
outputs
[
1
].
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
:
outputs
[
1
].
matrix
<
Device
>
();
auto
w_grad_mat
=
(
2UL
==
outputs
.
size
())
?
outputs
[
1
].
matrix
<
Device
>
()
:
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
);
ContextProjectionBackward
<
Device
>
(
out_grad_mat
,
in_grad_mat
,
w_grad_mat
,
...
...
@@ -304,17 +306,17 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
1
,
static_cast
<
int
>
(
inputs
.
size
()
));
CHECK_EQ
(
1
,
static_cast
<
int
>
(
outputs
.
size
()
));
CHECK_EQ
(
1
UL
,
inputs
.
size
(
));
CHECK_EQ
(
1
UL
,
outputs
.
size
(
));
CHECK
(
inputs
[
0
].
isSequenceArg
()
&&
outputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
const
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
out_seq
.
data
()
&&
in_seq
.
getSequenceId
().
data
());
CHECK_EQ
(
static_cast
<
int
>
(
out_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceId
().
shape
().
ndims
()),
1
);
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
in_seq
.
getSequenceId
().
shape
().
ndims
(),
1UL
);
/// output layer grad dim == input layer grad dim * context_length_
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
out_seq
.
shape
().
ndims
()
*
context_length_
);
/// input and output has the same batch_size
...
...
@@ -355,14 +357,14 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
1
,
static_cast
<
int
>
(
inputs
.
size
()
));
CHECK_EQ
(
1
,
static_cast
<
int
>
(
outputs
.
size
()
));
CHECK_EQ
(
1
UL
,
inputs
.
size
(
));
CHECK_EQ
(
1
UL
,
outputs
.
size
(
));
CHECK
(
inputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceId
().
data
()
&&
outputs
[
0
].
data
());
CHECK_EQ
(
static_cast
<
int
>
(
outputs
[
0
].
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceId
().
shape
().
ndims
()),
1
);
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
2UL
);
CHECK_EQ
(
in_seq
.
getSequenceId
().
shape
().
ndims
(),
1UL
);
CHECK_EQ
(
in_seq
.
shape
()[
0
],
outputs
[
0
].
shape
()[
0
]);
/// output layer grad dim == weight dim * context_length_
CHECK_EQ
(
in_seq
.
shape
()[
1
],
outputs
[
0
].
shape
()[
1
]
*
context_length_
);
...
...
paddle/function/ContextProjectionOp.h
浏览文件 @
1251501c
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Function.h"
namespace
paddle
{
...
...
paddle/function/ContextProjectionOpTest.cpp
浏览文件 @
1251501c
...
...
@@ -28,55 +28,26 @@ void testMatrixProjectionForward(int context_start,
std
::
max
(
0
,
(
int
)(
context_start
+
context_length
-
1
));
if
(
pad
==
0
)
is_padding
=
false
;
FunctionCompare
compare
(
"ContextProjectionForward"
,
FuncConfig
()
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
)
.
set
(
"begin_pad"
,
std
::
max
(
0
,
-
context_start
)));
CpuMatrix
cpu_in
(
batch_size
,
input_dim
);
cpu_in
.
randomizeUniform
();
GpuMatrix
gpu_in
(
batch_size
,
input_dim
);
gpu_in
.
copyFrom
(
cpu_in
);
auto
cpu_weight
=
is_padding
?
std
::
make_shared
<
CpuMatrix
>
(
pad
,
input_dim
)
:
nullptr
;
auto
gpu_weight
=
is_padding
?
std
::
make_shared
<
GpuMatrix
>
(
pad
,
input_dim
)
:
nullptr
;
if
(
is_padding
)
{
cpu_weight
->
randomizeUniform
();
gpu_weight
->
copyFrom
(
*
cpu_weight
);
FunctionCompare
test
(
"ContextProjectionForward"
,
FuncConfig
()
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
)
.
set
(
"begin_pad"
,
std
::
max
(
0
,
-
context_start
)));
// prepare input arguments
test
.
addSequence
(
SequenceIdArg
(
TensorShape
{
batch_size
}));
test
.
addInputs
(
SequenceArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
batch_size
,
input_dim
}));
if
(
is_padding
)
{
// weight
test
.
addInputs
(
SequenceArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
pad
,
input_dim
}));
}
IVectorPtr
cpu_seq
;
generateSequenceStartPositions
(
batch_size
,
cpu_seq
);
IVectorPtr
gpu_seq
=
IVector
::
create
(
cpu_seq
->
getSize
(),
true
);
gpu_seq
->
copyFrom
(
*
cpu_seq
);
CpuMatrix
cpu_out
(
batch_size
,
input_dim
*
context_length
);
GpuMatrix
gpu_out
(
batch_size
,
input_dim
*
context_length
);
cpu_out
.
randomizeUniform
();
gpu_out
.
copyFrom
(
cpu_out
);
BufferArgs
cpu_inputs
;
BufferArgs
cpu_outputs
;
cpu_inputs
.
addArg
(
cpu_in
,
*
cpu_seq
);
if
(
cpu_weight
)
{
cpu_inputs
.
addArg
(
*
cpu_weight
,
*
cpu_seq
);
}
cpu_outputs
.
addArg
(
cpu_out
,
*
cpu_seq
,
ADD_TO
);
compare
.
getCpuFunction
()
->
calc
(
cpu_inputs
,
cpu_outputs
);
test
.
addOutputs
(
SequenceArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
batch_size
,
input_dim
*
context_length
}),
ADD_TO
);
BufferArgs
gpu_inputs
;
BufferArgs
gpu_outputs
;
gpu_inputs
.
addArg
(
gpu_in
,
*
gpu_seq
);
if
(
gpu_weight
)
{
gpu_inputs
.
addArg
(
*
gpu_weight
,
*
gpu_seq
);
}
gpu_outputs
.
addArg
(
gpu_out
,
*
gpu_seq
,
ADD_TO
);
compare
.
getGpuFunction
()
->
calc
(
gpu_inputs
,
gpu_outputs
);
autotest
::
TensorCheckEqual
(
cpu_out
,
gpu_out
);
// run Function
test
.
run
();
}
void
testMatrixProjectionBackward
(
int
context_start
,
...
...
@@ -88,63 +59,31 @@ void testMatrixProjectionBackward(int context_start,
std
::
max
(
0
,
(
int
)(
context_start
+
context_length
-
1
));
if
(
pad
==
0
)
is_padding
=
false
;
FunctionCompare
compare
(
"ContextProjectionBackward"
,
FuncConfig
()
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
)
.
set
(
"begin_pad"
,
std
::
max
(
0
,
-
context_start
))
.
set
(
"is_padding"
,
is_padding
)
.
set
(
"total_pad"
,
pad
));
CpuMatrix
cpu_in_grad
(
batch_size
,
input_dim
);
cpu_in_grad
.
randomizeUniform
();
GpuMatrix
gpu_in_grad
(
batch_size
,
input_dim
);
gpu_in_grad
.
copyFrom
(
cpu_in_grad
);
CpuMatrix
cpu_out_grad
(
batch_size
,
input_dim
*
context_length
);
cpu_out_grad
.
randomizeUniform
();
GpuMatrix
gpu_out_grad
(
batch_size
,
input_dim
*
context_length
);
gpu_out_grad
.
copyFrom
(
cpu_out_grad
);
IVectorPtr
cpu_seq
;
generateSequenceStartPositions
(
batch_size
,
cpu_seq
);
IVectorPtr
gpu_seq
=
IVector
::
create
(
cpu_seq
->
getSize
(),
true
);
gpu_seq
->
copyFrom
(
*
cpu_seq
);
auto
cpu_w_grad
=
is_padding
?
std
::
make_shared
<
CpuMatrix
>
(
pad
,
input_dim
)
:
nullptr
;
auto
gpu_w_grad
=
is_padding
?
std
::
make_shared
<
GpuMatrix
>
(
pad
,
input_dim
)
:
nullptr
;
if
(
is_padding
)
{
cpu_w_grad
->
randomizeUniform
();
gpu_w_grad
->
copyFrom
(
*
cpu_w_grad
);
FunctionCompare
test
(
"ContextProjectionBackward"
,
FuncConfig
()
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
)
.
set
(
"begin_pad"
,
std
::
max
(
0
,
-
context_start
))
.
set
(
"is_padding"
,
is_padding
)
.
set
(
"total_pad"
,
pad
));
// prepare input arguments
test
.
addSequence
(
SequenceIdArg
(
TensorShape
{
batch_size
}));
test
.
addInputs
(
SequenceArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
batch_size
,
input_dim
*
context_length
}));
test
.
addOutputs
(
SequenceArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
batch_size
,
input_dim
}),
ADD_TO
);
if
(
is_padding
)
{
// weight
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
pad
,
input_dim
}),
ADD_TO
);
}
BufferArgs
cpu_inputs
;
BufferArgs
cpu_outputs
;
cpu_inputs
.
addArg
(
cpu_out_grad
,
*
cpu_seq
);
cpu_outputs
.
addArg
(
cpu_in_grad
,
*
cpu_seq
,
ADD_TO
);
cpu_outputs
.
addArg
(
cpu_w_grad
?
*
cpu_w_grad
:
CpuMatrix
(
nullptr
,
0
,
input_dim
),
ADD_TO
);
compare
.
getCpuFunction
()
->
calc
(
cpu_inputs
,
cpu_outputs
);
BufferArgs
gpu_inputs
;
BufferArgs
gpu_outputs
;
gpu_inputs
.
addArg
(
gpu_out_grad
,
*
gpu_seq
);
gpu_outputs
.
addArg
(
gpu_in_grad
,
*
gpu_seq
,
ADD_TO
);
gpu_outputs
.
addArg
(
gpu_w_grad
?
*
gpu_w_grad
:
GpuMatrix
(
nullptr
,
0
,
input_dim
),
ADD_TO
);
compare
.
getGpuFunction
()
->
calc
(
gpu_inputs
,
gpu_outputs
);
autotest
::
TensorCheckErr
(
cpu_in_grad
,
gpu_in_grad
);
if
(
is_padding
)
{
autotest
::
TensorCheckErr
(
*
cpu_w_grad
,
*
gpu_w_grad
);
}
// run Function
test
.
run
();
}
TEST
(
ContextProjection
,
p
rojection
)
{
TEST
(
ContextProjection
,
P
rojection
)
{
for
(
auto
context_start
:
{
-
5
,
-
3
,
-
1
,
0
,
3
})
{
for
(
auto
context_length
:
{
1
,
2
,
5
,
7
})
{
for
(
auto
trainable_padding
:
{
false
,
true
})
{
...
...
paddle/function/FunctionTest.h
浏览文件 @
1251501c
...
...
@@ -69,6 +69,54 @@ public:
gpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
()));
}
// assume one copy of sequence is shared by different SequenceArgs
void
addSequence
(
const
SequenceIdArg
&
input
)
{
CHECK_EQ
(
input
.
shape
().
ndims
(),
1UL
);
size_t
batchSize
=
input
.
shape
()[
0
];
size_t
numSeqs
=
batchSize
/
10
+
1
;
size_t
sizeId
=
(
numSeqs
+
1
)
*
sizeOfValuType
(
VALUE_TYPE_INT32
);
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
sizeId
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
sizeId
));
cpuSeq_
=
std
::
make_shared
<
SequenceIdArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
TensorShape
{
numSeqs
+
1
});
gpuSeq_
=
std
::
make_shared
<
SequenceIdArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
TensorShape
{
numSeqs
+
1
});
/// init sequence Id
initArg
(
*
cpuSeq_
,
batchSize
);
// todo(tianbing), delete it
CHECK_EQ
(
cpuSeq_
->
shape
().
getElements
(),
cpuSeq_
->
numSeqs
()
+
1
);
CpuIVector
cpuSeq
(
cpuSeq_
->
shape
().
getElements
(),
(
int
*
)
cpuSeq_
->
data
());
GpuIVector
gpuSeq
(
gpuSeq_
->
shape
().
getElements
(),
(
int
*
)
gpuSeq_
->
data
());
gpuSeq
.
copyFrom
(
cpuSeq
);
}
void
addInputs
(
const
SequenceArg
&
input
)
{
CHECK_EQ
(
input
.
shape
().
ndims
(),
2UL
);
size_t
batchSize
=
input
.
shape
()[
0
];
if
(
!
cpuSeq_
||
!
gpuSeq_
)
{
// sequence not exist
addSequence
(
SequenceIdArg
(
TensorShape
{
batchSize
}));
}
size_t
size
=
input
.
shape
().
getElements
()
*
sizeOfValuType
(
input
.
valueType
());
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
/// SequenceArg
cpuInputs_
.
emplace_back
(
std
::
make_shared
<
SequenceArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
(),
*
cpuSeq_
));
gpuInputs_
.
emplace_back
(
std
::
make_shared
<
SequenceArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
(),
*
gpuSeq_
));
}
// output need only contains shape, do not contains data.
void
addOutputs
(
const
BufferArg
&
output
,
ArgType
argType
=
ASSIGN_TO
)
{
size_t
size
=
...
...
@@ -86,6 +134,7 @@ public:
output
.
valueType
(),
output
.
shape
(),
argType
));
<<<<<<<
HEAD
}
/// add and init output sparse matrix
...
...
@@ -116,24 +165,31 @@ public:
std
::
make_shared
<
SparseMatrixArg
>
(
*
gpuSparse_
,
argType
));
}
void
addInputs
(
const
SequenceArg
&
input
)
{
size_t
batchSize
=
input
.
shape
()[
0
];
size_t
numSeqs
=
batchSize
/
10
+
1
;
size_t
sizeId
=
(
numSeqs
+
1
)
*
sizeOfValuType
(
VALUE_TYPE_INT32
);
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
sizeId
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
sizeId
));
TensorShape
seqsId
({
numSeqs
+
1
});
// void* cpuBuffer = cpuMemory_.back()->getBuf();
// void* gpuBuffer = gpuMemory_.back()->getBuf();
void
addOutputs
(
const
SequenceArg
&
output
,
ArgType
argType
=
ASSIGN_TO
)
{
CHECK_EQ
(
output
.
shape
().
ndims
(),
2UL
);
size_t
batchSize
=
output
.
shape
()[
0
];
if
(
!
cpuSeq_
||
!
gpuSeq_
)
{
// sequence not exist
addSequence
(
SequenceIdArg
(
TensorShape
{
batchSize
}));
}
size_t
size
=
input
.
shape
().
getElements
()
*
sizeOfValuType
(
in
put
.
valueType
());
output
.
shape
().
getElements
()
*
sizeOfValuType
(
out
put
.
valueType
());
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
// TODO: need be implemented.
/// SequenceArg
cpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SequenceArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
output
.
valueType
(),
output
.
shape
(),
*
cpuSeq_
,
argType
));
gpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SequenceArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
output
.
valueType
(),
output
.
shape
(),
*
gpuSeq_
,
argType
));
}
void
addInputs
(
const
SparseMatrixArg
&
input
)
{
...
...
@@ -193,14 +249,44 @@ public:
std
::
shared_ptr
<
FunctionBase
>
getGpuFunction
()
const
{
return
gpuFunc_
;
}
protected:
// only init cpu argument, gpu argument copy from cpu argument.
void
initArg
(
BufferArg
&
arg
)
{
CpuVector
vector
(
arg
.
shape
().
getElements
(),
(
real
*
)
arg
.
data
());
vector
.
uniform
(
0.001
,
1
);
}
void
initArg
(
SequenceArg
&
arg
)
{
/// init only matrix
CpuVector
vector
(
arg
.
shape
().
getElements
(),
(
real
*
)
arg
.
data
());
vector
.
uniform
(
0.001
,
1
);
}
void
initArg
(
SequenceIdArg
&
arg
,
size_t
batchSize
)
{
size_t
numSeqs
=
arg
.
numSeqs
();
int
*
buf
=
reinterpret_cast
<
int
*>
(
arg
.
data
());
int
pos
=
0
;
size_t
maxLen
=
2
*
batchSize
/
numSeqs
;
for
(
int
i
=
0
;
i
<
(
int
)
numSeqs
;
++
i
)
{
int
len
=
1
+
uniformRandom
(
std
::
min
<
int64_t
>
(
maxLen
,
batchSize
-
pos
-
numSeqs
+
i
));
buf
[
i
]
=
pos
;
pos
+=
len
;
VLOG
(
1
)
<<
" len="
<<
len
;
}
buf
[
numSeqs
]
=
batchSize
;
}
void
initInputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuInputs_
.
size
();
i
++
)
{
if
(
cpuInputs_
[
i
]
->
isSparseArg
())
{
continue
;
/// sparse matrix already init
}
initArg
(
*
cpuInputs_
[
i
]);
if
(
cpuInputs_
[
i
]
->
isSequenceArg
())
{
initArg
(
dynamic_cast
<
SequenceArg
&>
(
*
cpuInputs_
[
i
]));
}
else
{
initArg
(
*
cpuInputs_
[
i
]);
}
// TODO: Need a BufferCopy used to copy from one BufferArg to another.
CpuVector
cpuVector
(
cpuInputs_
[
i
]
->
shape
().
getElements
(),
(
real
*
)
cpuInputs_
[
i
]
->
data
());
...
...
@@ -217,7 +303,11 @@ protected:
continue
;
/// sparse matrix already init
}
initArg
(
*
cpuOutputs_
[
i
]);
if
(
cpuOutputs_
[
i
]
->
isSequenceArg
())
{
initArg
(
dynamic_cast
<
SequenceArg
&>
(
*
cpuOutputs_
[
i
]));
}
else
{
initArg
(
*
cpuOutputs_
[
i
]);
}
// TODO: Need a BufferCopy used to copy from one BufferArg to another.
CpuVector
cpuVector
(
cpuOutputs_
[
i
]
->
shape
().
getElements
(),
...
...
@@ -241,28 +331,6 @@ protected:
}
}
// only init cpu argument, gpu argument copy from cpu argument.
void
initArg
(
BufferArg
&
arg
)
{
CpuVector
vector
(
arg
.
shape
().
getElements
(),
(
real
*
)
arg
.
data
());
vector
.
uniform
(
0.001
,
1
);
}
void
initArg
(
SequenceIdArg
&
arg
,
size_t
batchSize
)
{
size_t
numSeqs
=
arg
.
numSeqs
();
int
*
buf
=
reinterpret_cast
<
int
*>
(
arg
.
data
());
int
pos
=
0
;
size_t
maxLen
=
2
*
batchSize
/
numSeqs
;
for
(
int
i
=
0
;
i
<
(
int
)
numSeqs
;
++
i
)
{
int
len
=
uniformRandom
(
std
::
min
<
int64_t
>
(
maxLen
,
batchSize
-
pos
-
numSeqs
+
i
))
+
1
;
buf
[
i
]
=
pos
;
pos
+=
len
;
VLOG
(
1
)
<<
" len="
<<
len
;
}
buf
[
numSeqs
]
=
batchSize
;
}
protected:
std
::
shared_ptr
<
FunctionBase
>
cpuFunc_
;
std
::
shared_ptr
<
FunctionBase
>
gpuFunc_
;
...
...
@@ -274,6 +342,8 @@ protected:
std
::
vector
<
BufferArgPtr
>
gpuOutputs_
;
std
::
shared_ptr
<
CpuSparseMatrix
>
cpuSparse_
;
std
::
shared_ptr
<
GpuSparseMatrix
>
gpuSparse_
;
std
::
shared_ptr
<
SequenceIdArg
>
cpuSeq_
;
std
::
shared_ptr
<
SequenceIdArg
>
gpuSeq_
;
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录