Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
590ecba3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
590ecba3
编写于
12月 27, 2016
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ContextProjectionBackward, ContextProjectionBackwardData, ContextProjectionBackwardWeightw
上级
838ef366
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
548 addition
and
6 deletion
+548
-6
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+0
-1
paddle/function/context_projection_op.cpp
paddle/function/context_projection_op.cpp
+196
-1
paddle/function/context_projection_op.h
paddle/function/context_projection_op.h
+43
-3
paddle/function/context_projection_op_gpu.cu
paddle/function/context_projection_op_gpu.cu
+210
-0
paddle/function/context_projection_op_test.cpp
paddle/function/context_projection_op_test.cpp
+99
-1
未找到文件。
paddle/function/CMakeLists.txt
浏览文件 @
590ecba3
...
...
@@ -19,7 +19,6 @@ if(WITH_TESTING)
add_simple_unittest
(
CrossMapNormalOpTest
)
add_unittest
(
ContextProjectionOpTest
ContextProjectionOpTest.cpp
ContextProjectionOpGpu.cu
../gserver/tests/TestUtil.cpp
)
endif
()
endif
()
...
...
paddle/function/context_projection_op.cpp
浏览文件 @
590ecba3
...
...
@@ -41,7 +41,7 @@ void ContextProjectionForward<DEVICE_TYPE_CPU>(Tensor& output,
!
weight
.
getData
()
?
nullptr
:
std
::
make_shared
<
CpuMatrix
>
(
weight
.
getData
(),
weight
.
dims_
[
0
],
inpu
t
.
dims_
[
1
]);
weight
.
getData
(),
weight
.
dims_
[
0
],
weigh
t
.
dims_
[
1
]);
CpuIVector
seq_vec
(
sequence
.
dims_
[
0
],
reinterpret_cast
<
int
*>
(
sequence
.
getData
()));
CHECK_EQ
(
out_mat
->
getWidth
(),
in_mat
->
getWidth
()
*
context_length
);
...
...
@@ -125,12 +125,207 @@ private:
bool
is_padding_
;
};
template
<
>
void
ContextProjectionBackward
<
DEVICE_TYPE_CPU
>
(
Tensor
&
out_grad
,
const
Tensor
&
in_grad
,
const
Tensor
&
w_grad
,
const
Tensor
&
sequence
,
size_t
context_length
,
int
context_start
,
size_t
begin_pad
,
bool
is_padding
)
{
CHECK
(
out_grad
.
getData
()
&&
sequence
.
getData
());
CHECK_EQ
(
out_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
in_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
w_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
sequence
.
dims_
.
size
(),
1
);
auto
out_grad_mat
=
std
::
make_shared
<
CpuMatrix
>
(
out_grad
.
getData
(),
out_grad
.
dims_
[
0
],
out_grad
.
dims_
[
1
]);
const
auto
in_grad_mat
=
!
in_grad
.
getData
()
?
nullptr
:
std
::
make_shared
<
CpuMatrix
>
(
in_grad
.
getData
(),
in_grad
.
dims_
[
0
],
in_grad
.
dims_
[
1
]);
const
auto
w_grad_mat
=
!
w_grad
.
getData
()
?
nullptr
:
std
::
make_shared
<
CpuMatrix
>
(
w_grad
.
getData
(),
w_grad
.
dims_
[
0
],
w_grad
.
dims_
[
1
]);
CpuIVector
seq_vec
(
sequence
.
dims_
[
0
],
reinterpret_cast
<
int
*>
(
sequence
.
getData
()));
CHECK_EQ
(
out_grad_mat
->
getWidth
(),
in_grad_mat
->
getWidth
()
*
context_length
);
size_t
input_dim
=
in_grad_mat
?
in_grad_mat
->
getWidth
()
:
w_grad_mat
?
w_grad_mat
->
getWidth
()
:
0
;
CHECK_EQ
(
out_grad_mat
->
getWidth
(),
input_dim
*
context_length
);
const
int
*
starts
=
seq_vec
.
getData
();
size_t
num_sequences
=
seq_vec
.
getSize
()
-
1
;
for
(
size_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
context_length
;
++
j
)
{
int
begin
=
starts
[
i
]
+
context_start
+
j
;
int
end
=
starts
[
i
+
1
]
+
context_start
+
j
;
int
dst_begin
=
starts
[
i
];
int
dst_end
=
starts
[
i
+
1
];
if
(
begin
<
starts
[
i
])
{
int64_t
pad_size
=
std
::
min
(
starts
[
i
]
-
begin
,
starts
[
i
+
1
]
-
starts
[
i
]);
if
(
is_padding
&&
w_grad_mat
)
{
MatrixPtr
mat
=
out_grad_mat
->
subMatrix
(
starts
[
i
],
pad_size
);
MatrixPtr
sub
=
w_grad_mat
->
subMatrix
(
j
,
pad_size
);
sub
->
addAtOffset
(
*
mat
,
j
*
input_dim
);
}
dst_begin
=
starts
[
i
]
+
pad_size
;
begin
=
starts
[
i
];
}
if
(
end
>
starts
[
i
+
1
])
{
int64_t
pad_size
=
std
::
min
(
end
-
starts
[
i
+
1
],
starts
[
i
+
1
]
-
starts
[
i
]);
if
(
is_padding
&&
w_grad_mat
)
{
MatrixPtr
mat
=
out_grad_mat
->
subMatrix
(
starts
[
i
+
1
]
-
pad_size
,
pad_size
);
MatrixPtr
sub
=
w_grad_mat
->
subMatrix
(
begin_pad
+
context_start
+
j
-
pad_size
,
pad_size
);
sub
->
addAtOffset
(
*
mat
,
j
*
input_dim
);
}
dst_end
=
starts
[
i
+
1
]
-
pad_size
;
end
=
starts
[
i
+
1
];
}
if
(
end
<=
begin
)
continue
;
if
(
!
in_grad_mat
)
continue
;
MatrixPtr
src
=
in_grad_mat
->
subMatrix
(
begin
,
end
-
begin
);
MatrixPtr
dst
=
out_grad_mat
->
subMatrix
(
dst_begin
,
dst_end
-
dst_begin
);
src
->
addAtOffset
(
*
dst
,
j
*
input_dim
);
}
}
}
/**
* \param inputs[0] input value.
* \param inputs[1] input weight.
* \param inputs[2] input sequence.
* \param outputs[0] output value.
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardFunc
:
public
FunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
context_length_
=
config
.
get
<
size_t
>
(
"context_length"
);
context_start_
=
config
.
get
<
int
>
(
"context_start"
);
begin_pad_
=
config
.
get
<
size_t
>
(
"begin_pad"
);
is_padding_
=
config
.
get
<
bool
>
(
"is_padding"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
3
,
inputs
.
size
());
CHECK_EQ
(
1
,
outputs
.
size
());
CHECK_EQ
(
0
,
inouts
.
size
());
ContextProjectionBackward
<
Device
>
((
Tensor
&
)
outputs
[
0
],
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
context_length_
,
context_start_
,
begin_pad_
,
is_padding_
);
}
private:
size_t
context_length_
;
int
context_start_
;
size_t
begin_pad_
;
bool
is_padding_
;
};
/**
* \param inputs[0] input grad.
* \param inputs[1] input sequence.
* \param outputs[0] output grad.
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardDataFunc
:
public
FunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
context_length_
=
config
.
get
<
size_t
>
(
"context_length"
);
context_start_
=
config
.
get
<
int
>
(
"context_start"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
2
,
inputs
.
size
());
CHECK_EQ
(
1
,
outputs
.
size
());
CHECK_EQ
(
0
,
inouts
.
size
());
ContextProjectionBackwardData
<
Device
>
((
Tensor
&
)
outputs
[
0
],
(
Tensor
&
)
inputs
[
0
],
inputs
[
1
],
context_length_
,
context_start_
);
}
private:
size_t
context_length_
;
int
context_start_
;
};
/**
* \param inputs[0] weight grad.
* \param inputs[1] input sequence.
* \param outputs[0] output grad.
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardWeightFunc
:
public
FunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
context_length_
=
config
.
get
<
size_t
>
(
"context_length"
);
context_start_
=
config
.
get
<
int
>
(
"context_start"
);
begin_pad_
=
config
.
get
<
size_t
>
(
"begin_pad"
);
total_pad_
=
config
.
get
<
size_t
>
(
"total_pad"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
2
,
inputs
.
size
());
CHECK_EQ
(
1
,
outputs
.
size
());
CHECK_EQ
(
0
,
inouts
.
size
());
ContextProjectionBackwardWeight
<
Device
>
((
Tensor
&
)
outputs
[
0
],
(
Tensor
&
)
inputs
[
0
],
inputs
[
1
],
context_length_
,
context_start_
,
total_pad_
,
begin_pad_
);
}
private:
size_t
context_length_
;
int
context_start_
;
size_t
begin_pad_
;
size_t
total_pad_
;
};
REGISTER_TYPED_FUNC
(
ContextProjectionForward
,
CPU
,
ContextProjectionForwardFunc
);
REGISTER_TYPED_FUNC
(
ContextProjectionBackward
,
CPU
,
ContextProjectionBackwardFunc
);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC
(
ContextProjectionForward
,
GPU
,
ContextProjectionForwardFunc
);
REGISTER_TYPED_FUNC
(
ContextProjectionBackwardData
,
GPU
,
ContextProjectionBackwardDataFunc
);
REGISTER_TYPED_FUNC
(
ContextProjectionBackwardWeight
,
GPU
,
ContextProjectionBackwardWeightFunc
);
#endif
}
// namespace paddle
paddle/function/context_projection_op.h
浏览文件 @
590ecba3
...
...
@@ -25,9 +25,10 @@ namespace paddle {
* \param[in] input input data.
* \param[in] weight input weight.
* \param[in] sequence input data.
* \param[in] context_length consecutive rows for concatenation.
* \param[in] begin_pad context start position.
* \param[in] is_padding whether padding 0 or not.
* \param[in] context_length consecutive rows for concatenation.
* \param[in] context_start context start position.
* \param[in] begin_pad begining pad position.
* \param[in] is_padding whether padding 0 or not.
*
*/
template
<
DeviceType
Device
>
...
...
@@ -40,4 +41,43 @@ void ContextProjectionForward(Tensor& output,
size_t
begin_pad
,
bool
is_padding
);
/**
* \brief Context Projection Backward.
*
* \param[out] outputs output gradient.
* \param[in] input input gradient.
* \param[in] weight input weight gradient.
* \param[in] sequence input data.
* \param[in] context_length consecutive rows for concatenation.
* \param[in] context_start context start position.
* \param[in] begin_pad begining pad position.
* \param[in] is_padding whether padding 0 or not.
*
*/
template
<
DeviceType
Device
>
void
ContextProjectionBackward
(
Tensor
&
out_grad
,
const
Tensor
&
in_grad
,
const
Tensor
&
w_grad
,
const
Tensor
&
sequence
,
size_t
context_length
,
int
context_start
,
size_t
begin_pad
,
bool
is_padding
);
template
<
DeviceType
Device
>
void
ContextProjectionBackwardData
(
Tensor
&
out_grad
,
Tensor
&
in_grad
,
const
Tensor
&
sequence
,
size_t
context_length
,
int
context_start
);
template
<
DeviceType
Device
>
void
ContextProjectionBackwardWeight
(
Tensor
&
out_grad
,
Tensor
&
w_grad
,
const
Tensor
&
sequence
,
size_t
context_length
,
int
context_start
,
size_t
total_pad
,
size_t
begin_pad
);
}
// namespace paddle
paddle/function/context_projection_op_gpu.cu
浏览文件 @
590ecba3
...
...
@@ -134,4 +134,214 @@ void ContextProjectionForward<DEVICE_TYPE_GPU>(Tensor& output,
is_padding
);
}
__global__
void
KeContextProjectionBackwardData
(
real
*
out_grad
,
const
int
*
sequence
,
real
*
in_grad
,
int
input_dim
,
int
context_length
,
int
context_start
)
{
int
idx
=
threadIdx
.
x
;
int
block_size
=
blockDim
.
x
;
int
sequenceId
=
blockIdx
.
x
;
int
seq_start
=
sequence
[
sequenceId
];
int
seq_end
=
sequence
[
sequenceId
+
1
];
real
value
=
0
;
int
instances
=
seq_end
-
seq_start
+
context_length
-
1
;
out_grad
+=
seq_start
*
input_dim
*
context_length
;
in_grad
+=
seq_start
*
input_dim
;
for
(
int
k
=
0
;
k
<=
input_dim
/
block_size
;
k
++
)
{
if
(
idx
<
input_dim
)
{
for
(
int
i
=
0
;
i
<
instances
;
i
++
)
{
if
((
i
+
context_start
)
<
0
)
{
continue
;
}
else
if
((
i
+
context_start
)
>=
(
seq_end
-
seq_start
))
{
continue
;
}
else
{
// value = 0;
value
=
in_grad
[(
i
+
context_start
)
*
input_dim
+
idx
];
}
int
outx
=
(
i
-
context_length
)
<
0
?
i
:
(
context_length
-
1
);
int
outy
=
(
i
-
context_length
)
<
0
?
0
:
(
i
-
(
context_length
-
1
));
real
*
output_r
=
out_grad
+
outy
*
input_dim
*
context_length
+
outx
*
input_dim
;
for
(
int
j
=
outy
;
j
<
seq_end
-
seq_start
;
j
++
)
{
value
+=
output_r
[
idx
];
if
(
j
-
outy
==
outx
)
break
;
output_r
+=
(
context_length
-
1
)
*
input_dim
;
}
in_grad
[(
i
+
context_start
)
*
input_dim
+
idx
]
=
value
;
}
}
idx
+=
block_size
;
}
}
void
hl_context_projection_backward_data
(
real
*
out_grad
,
const
int
*
sequence
,
real
*
input_grad
,
int
num_sequences
,
int
input_dim
,
int
context_length
,
int
context_start
)
{
CHECK_NOTNULL
(
out_grad
);
CHECK_NOTNULL
(
sequence
);
CHECK_NOTNULL
(
input_grad
);
int
block_size
=
128
;
int
blocks_x
=
num_sequences
;
int
blocks_y
=
1
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
blocks_x
,
blocks_y
);
KeContextProjectionBackwardData
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
out_grad
,
sequence
,
input_grad
,
input_dim
,
context_length
,
context_start
);
CHECK_SYNC
(
"hl_context_projection_backward_data failed"
);
}
template
<
>
void
ContextProjectionBackwardData
<
DEVICE_TYPE_GPU
>
(
Tensor
&
out_grad
,
Tensor
&
in_grad
,
const
Tensor
&
sequence
,
size_t
context_length
,
int
context_start
)
{
CHECK
(
in_grad
.
getData
()
&&
out_grad
.
getData
()
&&
sequence
.
getData
());
CHECK_EQ
(
out_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
in_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
sequence
.
dims_
.
size
(),
1
);
CHECK_EQ
(
out_grad
.
dims_
[
1
],
in_grad
.
dims_
[
1
]
*
context_length
);
hl_context_projection_backward_data
(
out_grad
.
getData
(),
reinterpret_cast
<
int
*>
(
sequence
.
getData
()),
in_grad
.
getData
(),
sequence
.
dims_
[
0
]
-
1
,
in_grad
.
dims_
[
1
],
context_length
,
context_start
);
}
template
<
int
THREADS_X
,
int
THREADS_Y
>
__global__
void
KeContextProjectionBackwardWeight
(
real
*
out_grad
,
const
int
*
sequence
,
real
*
w_grad
,
int
num_sequences
,
int
w_dim
,
int
context_length
,
int
context_start
,
int
begin_pad
)
{
__shared__
real
sum_s
[
THREADS_Y
][
THREADS_X
];
int
pad_of_block
=
(
w_dim
+
THREADS_X
-
1
)
/
THREADS_X
;
const
int
idx
=
threadIdx
.
x
;
const
int
idy
=
threadIdx
.
y
;
int
padId
=
blockIdx
.
x
/
pad_of_block
;
int
weight_idx
=
idx
+
THREADS_X
*
(
blockIdx
.
x
%
pad_of_block
);
int
instanceId
;
real
value
=
0
;
real
*
output_r
;
sum_s
[
idy
][
idx
]
=
0.0
f
;
if
(
weight_idx
<
w_dim
)
{
for
(
int
seqId
=
idy
;
seqId
<
num_sequences
;
seqId
+=
THREADS_Y
)
{
int
seq_start
=
sequence
[
seqId
];
int
seq_end
=
sequence
[
seqId
+
1
];
output_r
=
out_grad
+
seq_start
*
w_dim
*
context_length
;
if
(
context_start
<
0
)
{
if
(
padId
+
context_start
<
0
)
{
instanceId
=
padId
;
}
else
{
// begin_pad > 0;
instanceId
=
(
padId
-
begin_pad
)
+
(
seq_end
-
seq_start
)
-
context_start
;
}
}
else
{
if
(
padId
+
(
seq_end
-
seq_start
)
<
context_start
)
{
continue
;
}
else
{
// begin_pad == 0;
instanceId
=
padId
+
(
seq_end
-
seq_start
)
-
context_start
;
}
}
int
outx
=
(
instanceId
-
context_length
)
<
0
?
instanceId
:
(
context_length
-
1
);
int
outy
=
(
instanceId
-
context_length
)
<
0
?
0
:
(
instanceId
-
(
context_length
-
1
));
output_r
+=
outy
*
w_dim
*
context_length
+
outx
*
w_dim
;
for
(
int
j
=
outy
;
j
<
seq_end
-
seq_start
;
j
++
)
{
value
+=
output_r
[
weight_idx
];
if
(
j
-
outy
==
outx
)
break
;
output_r
+=
(
context_length
-
1
)
*
w_dim
;
}
}
sum_s
[
idy
][
idx
]
=
value
;
}
__syncthreads
();
for
(
int
stride
=
THREADS_Y
/
2
;
stride
>
0
;
stride
=
stride
/
2
)
{
if
(
idy
<
stride
)
{
sum_s
[
idy
][
idx
]
+=
sum_s
[
idy
+
stride
][
idx
];
}
__syncthreads
();
}
__syncthreads
();
if
(
weight_idx
<
w_dim
)
{
if
(
idy
==
0
)
{
w_grad
[
padId
*
w_dim
+
weight_idx
]
+=
sum_s
[
0
][
idx
];
}
}
}
void
hl_context_projection_backward_weight
(
real
*
out_grad
,
const
int
*
sequence
,
real
*
w_grad
,
int
num_sequences
,
int
w_dim
,
size_t
total_pad
,
int
context_length
,
int
context_start
,
int
begin_pad
)
{
CHECK_NOTNULL
(
out_grad
);
CHECK_NOTNULL
(
sequence
);
CHECK_NOTNULL
(
w_grad
);
int
threads_x
=
32
;
int
threads_y
=
32
;
int
blocks_x
=
total_pad
*
((
w_dim
+
threads_x
-
1
)
/
threads_x
);
dim3
threads
(
threads_x
,
threads_y
);
dim3
grid
(
blocks_x
,
1
);
KeContextProjectionBackwardWeight
<
32
,
32
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
out_grad
,
sequence
,
w_grad
,
num_sequences
,
w_dim
,
context_length
,
context_start
,
begin_pad
);
CHECK_SYNC
(
"hl_context_projection_backward_weight failed"
);
}
template
<
>
void
ContextProjectionBackwardWeight
<
DEVICE_TYPE_GPU
>
(
Tensor
&
out_grad
,
Tensor
&
w_grad
,
const
Tensor
&
sequence
,
size_t
context_length
,
int
context_start
,
size_t
total_pad
,
size_t
begin_pad
)
{
CHECK
(
w_grad
.
getData
()
&&
out_grad
.
getData
());
CHECK_EQ
(
out_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
w_grad
.
dims_
.
size
(),
2
);
CHECK_EQ
(
sequence
.
dims_
.
size
(),
1
);
CHECK_EQ
(
out_grad
.
dims_
[
1
],
w_grad
.
dims_
[
1
]
*
context_length
);
hl_context_projection_backward_weight
(
out_grad
.
getData
(),
reinterpret_cast
<
int
*>
(
sequence
.
getData
()),
w_grad
.
getData
(),
sequence
.
dims_
[
0
]
-
1
,
w_grad
.
dims_
[
1
],
total_pad
,
context_length
,
context_start
,
begin_pad
);
}
}
// namespace paddle
paddle/function/context_projection_op_test.cpp
浏览文件 @
590ecba3
...
...
@@ -77,7 +77,100 @@ void testMatrixProjectionForward(int context_start,
autotest
::
TensorCheckEqual
(
cpu_out
,
gpu_out
);
}
TEST
(
ContextProjectionForward
,
projection
)
{
void
testMatrixProjectionBackward
(
int
context_start
,
int
context_length
,
bool
is_padding
,
size_t
batch_size
,
size_t
input_dim
)
{
size_t
pad
=
std
::
max
(
0
,
-
context_start
)
+
std
::
max
(
0
,
(
int
)(
context_start
+
context_length
-
1
));
if
(
pad
==
0
)
is_padding
=
false
;
std
::
shared_ptr
<
FunctionBase
>
cpu_func
(
FunctionBase
::
funcRegistrar_
.
createByType
(
"ContextProjectionBackward-CPU"
));
FuncConfig
cpu_config
;
cpu_config
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
)
.
set
(
"begin_pad"
,
std
::
max
(
0
,
-
context_start
))
.
set
(
"is_padding"
,
is_padding
);
cpu_func
->
init
(
cpu_config
);
std
::
shared_ptr
<
FunctionBase
>
gpu_data_func
(
FunctionBase
::
funcRegistrar_
.
createByType
(
"ContextProjectionBackwardData-GPU"
));
FuncConfig
gpu_data_config
;
gpu_data_config
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
);
gpu_data_func
->
init
(
gpu_data_config
);
std
::
shared_ptr
<
FunctionBase
>
gpu_w_func
(
FunctionBase
::
funcRegistrar_
.
createByType
(
"ContextProjectionBackwardWeight-GPU"
));
FuncConfig
gpu_w_config
;
gpu_w_config
.
set
(
"context_length"
,
context_length
)
.
set
(
"context_start"
,
context_start
)
.
set
(
"begin_pad"
,
std
::
max
(
0
,
-
context_start
))
.
set
(
"total_pad"
,
pad
);
gpu_w_func
->
init
(
gpu_w_config
);
CpuMatrix
cpu_in_grad
(
batch_size
,
input_dim
);
cpu_in_grad
.
randomizeUniform
();
GpuMatrix
gpu_in_grad
(
batch_size
,
input_dim
);
gpu_in_grad
.
copyFrom
(
cpu_in_grad
);
CpuMatrix
cpu_out_grad
(
batch_size
,
input_dim
*
context_length
);
cpu_out_grad
.
randomizeUniform
();
GpuMatrix
gpu_out_grad
(
batch_size
,
input_dim
*
context_length
);
gpu_out_grad
.
copyFrom
(
cpu_out_grad
);
IVectorPtr
cpu_seq
;
generateSequenceStartPositions
(
batch_size
,
cpu_seq
);
IVectorPtr
gpu_seq
=
IVector
::
create
(
cpu_seq
->
getSize
(),
true
);
gpu_seq
->
copyFrom
(
*
cpu_seq
);
auto
cpu_w_grad
=
is_padding
?
std
::
make_shared
<
CpuMatrix
>
(
pad
,
input_dim
)
:
nullptr
;
auto
gpu_w_grad
=
is_padding
?
std
::
make_shared
<
GpuMatrix
>
(
pad
,
input_dim
)
:
nullptr
;
if
(
is_padding
)
{
cpu_w_grad
->
randomizeUniform
();
gpu_w_grad
->
copyFrom
(
*
cpu_w_grad
);
}
cpu_func
->
calc
({
Tensor
(
cpu_in_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
cpu_w_grad
?
cpu_w_grad
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
cpu_seq
->
getData
()),
Dims
{
cpu_seq
->
getSize
()})},
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
gpu_data_func
->
calc
(
{
Tensor
(
gpu_in_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()})},
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
if
(
is_padding
&&
gpu_w_grad
)
{
gpu_w_func
->
calc
({
Tensor
(
gpu_w_grad
->
getData
(),
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()})},
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
}
autotest
::
TensorCheckErr
(
cpu_in_grad
,
gpu_in_grad
);
if
(
is_padding
)
{
autotest
::
TensorCheckErr
(
*
cpu_w_grad
,
*
gpu_w_grad
);
}
}
TEST
(
ContextProjection
,
projection
)
{
for
(
auto
context_start
:
{
-
5
,
-
3
,
-
1
,
0
,
3
})
{
for
(
auto
context_length
:
{
1
,
2
,
5
,
7
})
{
for
(
auto
trainable_padding
:
{
false
,
true
})
{
...
...
@@ -93,6 +186,11 @@ TEST(ContextProjectionForward, projection) {
trainable_padding
,
batch_size
,
input_dim
);
testMatrixProjectionBackward
(
context_start
,
context_length
,
trainable_padding
,
batch_size
,
input_dim
);
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录