test_hsigmoid_op.py 25.1 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey1989 已提交
15 16
import unittest
import numpy as np
L
Leo Chen 已提交
17
import paddle
J
JiabinYang 已提交
18
import paddle.fluid as fluid
19 20
import paddle.nn.functional as F
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
21
import math
22
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
23

24
paddle.enable_static()
D
dzhwinter 已提交
25 26
np.random.seed(100)

Y
Yancey1989 已提交
27 28 29 30 31

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


32
class CodeTable:
Y
Yancey1989 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


46
class CodeTableWithCustomTree:
47 48 49
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
50 51 52 53 54 55 56
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
57
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
58 59 60 61 62 63 64 65 66 67
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
68
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
69 70 71
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
72 73 74
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
75
    for i in range(batch_size):
W
weixing02 已提交
76
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
77
        length = code_table.get_length()
W
weixing02 已提交
78
        for j in range(length):
Y
Yancey1989 已提交
79
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
80
            pre_output[i][j] += bias[idx][0]
81 82
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
83
        length = code_table.get_length()
84 85 86
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
87
    # clip[-40.0, 40.0]
W
weixing02 已提交
88
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
89
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
90
    for i in range(batch_size):
W
weixing02 已提交
91
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
92 93
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
94
        for j in range(length):
Y
Yancey1989 已提交
95 96 97 98 99 100 101
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
102
    return pre_output, out
Y
Yancey1989 已提交
103 104


105 106
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
107 108 109
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


129 130 131
def hsigmoidWithCustomTree(
    x, w, path_table, path_code, label, bias, num_classes
):
132
    batch_size = x.shape[0]
133
    code_length = len(path_table[0])
134
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
135
    # init pre_out with shape [N, code_length]
136 137 138
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
139 140
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
141
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
142 143 144 145
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
146
    for i in range(batch_size):
147
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
148 149 150 151 152 153 154 155
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
156
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
157 158 159 160 161 162 163 164 165 166 167 168 169
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


170 171 172
def python_api(
    input,
    label,
173 174
    weight,
    bias=None,
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    path_table=None,
    path_code=None,
    num_classes=-1,
    is_sparse=False,
    remote_prefetch=False,
):
    return paddle.nn.functional.hsigmoid_loss(
        input,
        label,
        num_classes,
        weight,
        bias,
        path_table,
        path_code,
        is_sparse,
    )
191 192 193 194 195


python_out_sig = ["Out"]


J
JiabinYang 已提交
196 197 198
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
199 200
        self.python_api = python_api
        self.python_out_sig = python_out_sig
201 202 203
        num_classes = 101
        feature_size = 5
        batch_size = 20
204 205 206 207 208 209 210 211 212
        x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype(
            'float64'
        )
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype(
            'float64'
        )
        label = np.random.randint(0, num_classes, (batch_size, 1)).astype(
            'int64'
        )
213
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
214 215 216 217
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
218
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
219 220

    def test_check_output(self):
221
        self.check_output(check_eager=True)
J
JiabinYang 已提交
222 223

    def test_check_grad(self):
224 225 226 227 228 229
        self.check_grad(
            ['X', 'W', 'Bias'],
            ['Out'],
            user_defined_grads=self.user_grads,
            check_eager=True,
        )
J
JiabinYang 已提交
230 231


232
@skip_check_grad_ci(
233
    reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
234
)
J
JiabinYang 已提交
235 236 237
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
238 239
        self.python_api = python_api
        self.python_out_sig = python_out_sig
240
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
241 242
        feature_size = 8
        batch_size = 4
243 244
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
245
        label = np.array([0, 1, 4, 5]).astype('int64')
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
266
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
267 268 269 270
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
271
            'PathTable': path_table,
272
            'PathCode': path_code,
J
JiabinYang 已提交
273
            'Label': label,
274
            'Bias': bias,
J
JiabinYang 已提交
275
        }
276 277 278
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
279 280 281
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
282
        self.check_output(check_eager=True)
J
JiabinYang 已提交
283 284 285 286 287


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
288 289 290 291 292 293
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64'
        )
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64'
        )
J
JiabinYang 已提交
294
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
295

296
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
297 298 299

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
300
            is_sparse=is_sparse,
J
JiabinYang 已提交
301
            size=[3, 3],
302 303 304 305 306
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(scale=1 / math.sqrt(3))
            ),
        )

307 308 309 310 311 312 313 314 315
        loss = paddle.nn.HSigmoidLoss(
            feature_size=emb.shape[1],
            num_classes=3,
            bias_attr=True,
            is_custom=True,
            is_sparse=is_sparse,
        )

        cost = loss(
316 317 318 319 320
            input=emb,
            label=label,
            path_table=path_table,
            path_code=path_code,
        )
J
JiabinYang 已提交
321 322 323 324 325

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
326 327
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
328
            paddle.seed(1)
J
JiabinYang 已提交
329 330
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
331 332 333
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
334 335 336 337 338 339 340 341 342 343 344 345

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
346
            for i in range(10):
347 348 349 350 351 352 353 354 355 356 357 358
                data = [
                    (
                        [[x[i % 2]]],
                        [list(path_table[i % 2])],
                        [list(path_code[i % 2])],
                        [label[i % 2]],
                    )
                ]

                loss_val = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[loss]
                )
J
JiabinYang 已提交
359 360 361 362 363 364
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
365
        assert dense_result == sparse_result
J
JiabinYang 已提交
366 367


368
@skip_check_grad_ci(
369
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
370
)
J
JiabinYang 已提交
371 372 373
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
374 375
        self.python_api = python_api
        self.python_out_sig = python_out_sig
376
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
377 378
        feature_size = 8
        batch_size = 4
379 380
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
381
        label = np.array([0, 1, 4, 5]).astype('int64')
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
402
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
403 404 405 406
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
407
            'PathTable': path_table,
408
            'PathCode': path_code,
J
JiabinYang 已提交
409
            'Label': label,
410
            'Bias': bias,
J
JiabinYang 已提交
411
        }
412 413 414
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
415 416 417
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
418
        self.check_output(check_eager=True)
J
JiabinYang 已提交
419 420

    def test_check_grad(self):
421 422 423 424 425 426
        self.check_grad(
            ['Bias', 'X', 'W'],
            ['Out'],
            no_grad_set=set('Label'),
            check_eager=True,
        )
J
JiabinYang 已提交
427

Y
Yancey1989 已提交
428

429
@skip_check_grad_ci(
430
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
431
)
432 433 434
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
435 436
        self.python_api = python_api
        self.python_out_sig = python_out_sig
437
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
438 439
        feature_size = 8
        batch_size = 4
440 441
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
442
        label = np.array([0, 1, 4, 5]).astype('int64')
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
463 464 465 466 467
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
468
            'PathTable': path_table,
469
            'PathCode': path_code,
470 471
            'Label': label,
        }
472 473 474 475 476 477 478 479 480
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
            path_table=path_table,
            path_code=path_code,
            label=label,
            bias=None,
            num_classes=num_classes,
        )
481 482 483
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
484
        self.check_output(check_eager=True)
485 486

    def test_check_grad(self):
487 488 489
        self.check_grad(
            ['X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True
        )
490 491


492 493 494 495 496 497 498 499 500 501 502 503 504
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
505 506 507 508 509
            -1, 1, [self.batch_size, self.feature_size]
        ).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64'
        )
510
        self.weight_np = np.random.uniform(
511 512 513 514 515
            -1, 1, [self.num_classes - 1, self.feature_size]
        ).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype(
            self.dtype
        )
516 517
        self.path_table_np = None
        self.path_code_np = None
518 519 520 521 522 523 524
        _, self.out_np = hsigmoid(
            self.x_np,
            self.weight_np,
            self.labels_np,
            self.bias_np,
            self.num_classes,
        )
525 526 527
        self.set_attrs()

        if self.is_custom:
528 529 530 531 532 533 534 535 536
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np,
                self.weight_np,
                self.path_table_np,
                self.path_code_np,
                self.labels_np,
                self.bias_np.reshape(-1, 1),
                self.num_classes,
            )
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
552 553 554
        out1 = F.hsigmoid_loss(
            x, labels, self.num_classes, weight, bias, path_table, path_code
        )
555 556 557

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
558 559 560 561 562 563 564
        m = paddle.nn.HSigmoidLoss(
            self.feature_size,
            self.num_classes,
            weight_attr,
            bias_attr,
            self.is_custom,
        )
565 566 567
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
568
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
569 570 571 572 573 574 575 576 577
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
578 579 580 581 582 583
            bias = paddle.static.data(
                'bias',
                [
                    -1,
                ],
            )
584 585 586 587 588
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
589 590 591
            out1 = F.hsigmoid_loss(
                x, labels, self.num_classes, weight, bias, path_table, path_code
            )
592 593

            weight_attr = paddle.framework.ParamAttr(
594 595
                initializer=I.NumpyArrayInitializer(self.weight_np)
            )
596
            bias_attr = paddle.framework.ParamAttr(
597 598 599 600 601 602 603 604 605
                initializer=I.NumpyArrayInitializer(self.bias_np)
            )
            m = paddle.nn.HSigmoidLoss(
                self.feature_size,
                self.num_classes,
                weight_attr,
                bias_attr,
                self.is_custom,
            )
606 607 608 609 610 611 612 613
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
614
                'bias': self.bias_np,
615 616 617 618
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
619 620 621
            ret1, ret2 = exe.run(
                train_program, feed=feed_dict, fetch_list=[out1, out2]
            )
622 623

            for ret in [ret1, ret2]:
624
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
625 626 627 628 629 630 631 632 633 634 635 636 637 638

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
639 640 641 642 643 644 645 646 647 648 649 650 651
            loss = paddle.nn.HSigmoidLoss(
                feature_size=x.shape[1],
                num_classes=self.num_classes,
                weight_attr=weight_attr,
                bias_attr=bias_attr,
                is_custom=self.is_custom,
                name='out',
            )
            out = loss(
                input=x,
                label=labels,
                path_table=path_table,
                path_code=path_code,
652
            )
653 654 655 656 657 658 659

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
660
            (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out])
661

662
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
663

664
    def test_errors(self):
665 666 667
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
668 669 670 671 672 673 674 675 676 677
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
678 679 680
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x_int32, label, 8, weight
            )
681

682 683 684 685 686 687
            label_float32 = paddle.static.data(
                'label_float32', [4, 1], 'float32'
            )
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label_float32, 8, weight
            )
688 689

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
690 691 692
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight_int32
            )
693 694

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32
            )

            path_table_int32 = paddle.static.data(
                'path_table_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32,
            )

            path_code_int32 = paddle.static.data(
                'path_code_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32,
            )
724

L
Linjie Chen 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

739

740 741 742
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        self.path_table_np = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(np.int64)
        self.path_code_np = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(np.int64)
759 760 761 762 763

    def test_errors(self):
        pass


Y
Yancey1989 已提交
764 765
if __name__ == '__main__':
    unittest.main()