engine.cc 17.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

21
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
22
#include "paddle/fluid/inference/tensorrt/helper.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31
int TensorRTEngine::runtime_batch_ = 1;

32 33 34 35 36
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
37
    infer_network_.reset(infer_builder_->createNetworkV2(
38 39 40
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
41
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
42
  }
43 44

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
45 46 47 48
  // optim_profile_ = infer_builder_->createOptimizationProfile();
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
49 50
}

51 52
void TensorRTEngine::Execute(int batch_size,
                             std::vector<void *> *buffers,
53
                             cudaStream_t stream) {
N
nhzlx 已提交
54
  freshDeviceId();
55 56 57 58 59 60 61
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
62
  }
N
nhzlx 已提交
63 64 65
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
66
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
67
  freshDeviceId();
68
  VLOG(3) << "TRT to freeze network";
69 70 71 72 73 74 75
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
76 77
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
78 79
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);

Z
Zhaolong Xing 已提交
80 81 82
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
83
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
84 85 86
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
87 88
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
89 90 91
    }
  }

92
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
93
  if (enable_int8) {
94 95 96
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

97
    if (calibrator_) {
98
      infer_builder_config_->setInt8Calibrator(calibrator_);
99
    } else {
100
      infer_builder_config_->setInt8Calibrator(nullptr);
101 102 103 104 105 106 107 108 109

#if IS_TRT_VERSION_GE(5000)
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
110 111
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
112 113 114 115
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
116

117 118
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
119 120 121 122
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
123 124 125
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
126 127
        }
      }
128

129
#if IS_TRT_VERSION_GE(5122)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
      auto layer_int8_fallback = [&](nvinfer1::ILayer *layer) -> bool {
        if (layer->getType() == nvinfer1::LayerType::kSHAPE) {
          return false;
        }
        bool all_int = true;
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (temp_in->getType() != nvinfer1::DataType::kINT32) {
            all_int = false;
          }
        }
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
          if (temp_out->getType() != nvinfer1::DataType::kINT32) {
            all_int = false;
          }
        }
        if (all_int) return false;

149 150 151 152 153 154
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
155
            return true;
156 157
          }
        }
158 159
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
160 161 162 163
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
164
            return true;
165 166
          }
        }
167
        return false;
168 169 170 171 172
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
173
      int layers_no_int8 = 0;
174 175
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
176
        if (layer_int8_fallback(layer)) {
177
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
178
          ++layers_no_int8;
179
        }
180
      }
181 182 183 184 185 186 187
      // Disable int8 or build engine failed if all layers aren't int8
      if (layers_no_int8 == network()->getNbLayers()) {
        nvinfer1::BuilderFlags flags = infer_builder_config_->getFlags();
        flags = flags & ~(1U << static_cast<int>(nvinfer1::BuilderFlag::kINT8));
        // reset flags
        infer_builder_config_->setFlags(flags);
      }
188 189 190 191 192
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
193 194
#endif
    }
N
nhzlx 已提交
195
  }
Y
Yan Chunwei 已提交
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
212 213 214
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
215 216 217 218 219
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

220 221
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
222
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
223 224
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
225
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
226
        // trt6 will check all_of input > 0
227 228
        if (!(std::all_of(input.second.begin(),
                          input.second.end(),
W
wenbin 已提交
229 230 231 232 233 234 235 236 237
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
238
#endif
W
wenbin 已提交
239 240 241 242 243 244
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
245 246
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMIN,
W
wenbin 已提交
247 248
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
249 250
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMAX,
W
wenbin 已提交
251 252
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
253 254
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kOPT,
W
wenbin 已提交
255 256 257
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
258
    }
259 260 261 262 263 264
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
265
    }
266 267
#endif
  }
268
#if IS_TRT_VERSION_GE(8200)
269 270 271 272
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
273 274
#endif

275
#if IS_TRT_VERSION_LT(8000)
276 277
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
278
#else
J
JingZhuangzhuang 已提交
279
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
280
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
281 282
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
283 284
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
285
#endif
286

287
  PADDLE_ENFORCE_NOT_NULL(
288 289 290 291
      infer_engine_,
      platform::errors::Fatal(
          "Build TensorRT cuda engine failed! Please recheck "
          "you configurations related to paddle-TensorRT."));
292

W
wenbin 已提交
293 294 295 296 297 298 299
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }

300
  GetEngineInfo();
Y
Yan Chunwei 已提交
301 302
}

303
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
304
                                                nvinfer1::DataType dtype,
305
                                                const nvinfer1::Dims &dims) {
306 307
  PADDLE_ENFORCE_EQ(network() != nullptr,
                    true,
308 309 310
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
311
  PADDLE_ENFORCE_NOT_NULL(
312 313 314 315 316 317 318
      input,
      platform::errors::InvalidArgument("Adding input %s failed in "
                                        "TensorRT inference network. "
                                        "Please recheck your input.",
                                        name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(),
                    true,
319 320 321 322
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
323
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
324 325 326
  return input;
}

327 328
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer,
                                   int offset,
329 330
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
331
  SetITensor(name, output);
332
  PADDLE_ENFORCE_NOT_NULL(
333 334 335
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
336
  output->setName(name.c_str());
337 338
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
339 340 341 342
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
343
  network()->markOutput(*output);
344
  PADDLE_ENFORCE_EQ(
345 346
      output->isNetworkOutput(),
      true,
347 348 349
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
350 351
}

352 353
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
354
  PADDLE_ENFORCE_NOT_NULL(
355 356 357
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
358
  output->setName(name.c_str());
359 360
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
361 362 363 364
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
365
  network()->markOutput(*output);
L
Luo Tao 已提交
366 367
}

368 369
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
370
  PADDLE_ENFORCE_NOT_NULL(
371 372 373
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
374
  PADDLE_ENFORCE_EQ(
375 376
      0,
      itensor_map_.count(name),
377 378
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
379 380 381
  itensor_map_[name] = tensor;
}

382
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
383 384
  PADDLE_ENFORCE_EQ(itensor_map_.count(name),
                    true,
385 386
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
387 388 389
  return itensor_map_[name];
}

390 391 392 393
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

394
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
395
                                        framework::Tensor *weight_tensor) {
396 397
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
398 399
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
400
  platform::CPUPlace cpu_place;
401 402
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
403 404 405 406
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
407 408
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
409 410
  paddle::framework::TensorCopySync(
      *weight_tensor, cpu_place, weight_map[name_with_suffix].get());
411 412 413
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
414 415 416
  return weight_data;
}

417 418
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

419
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
420 421
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
422
    plugin::PluginTensorRT *plugin) {
423
  owned_plugin_.emplace_back(plugin);
424
  return network()->addPluginV2(inputs, num_inputs, *plugin);
425 426
}

427
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
428 429
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
430 431 432 433 434
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

435
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
436 437
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
438 439 440 441 442
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
443 444 445
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
446 447
  PADDLE_ENFORCE_LT(device_id_,
                    count,
448 449
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
450 451
                        device_id_,
                        count));
L
Leo Chen 已提交
452
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
  auto infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
470 471 472
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle