fc_op.cc 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

27 28 29 30 31 32 33 34 35
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
36
  nvinfer1::ILayer* reshape_before_fc(nvinfer1::ITensor* before_fc,
37 38
                                      nvinfer1::Dims x_dim,
                                      int x_num_col_dims,
W
Wangzheee 已提交
39
                                      std::string output_name) {
40 41 42 43
    // add shuffle before fc
    nvinfer1::Dims reshape_before_fc_dim;
    reshape_before_fc_dim.nbDims = x_num_col_dims + 3;
    // padding shape "* x q x 1 x 1"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    nvinfer1::ITensor* filal_reshape_before_fc_shape_tensor = nullptr;

    if (!engine_->with_dynamic_shape()) {
      for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
        reshape_before_fc_dim.d[i] = 1;
      }
      for (int i = 0; i < x_dim.nbDims; i++) {
        if (i < x_num_col_dims) {
          reshape_before_fc_dim.d[i] = 0;
        } else {
          reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i];
        }
      }
    } else {
      std::vector<nvinfer1::ITensor*> reshape_before_fc_shape_tensor;
      nvinfer1::ITensor* input_shape_tensor = Shape(before_fc);

      for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
        reshape_before_fc_shape_tensor.push_back(Add1DConstantLayer(1));
      }
      for (int i = 0; i < x_dim.nbDims; i++) {
        if (i < x_num_col_dims) {
          reshape_before_fc_shape_tensor[i] =
              GetEleTensorOfShape(input_shape_tensor, i);
        } else {
          reshape_before_fc_shape_tensor[x_num_col_dims] =
              Prod(GetEleTensorOfShape(input_shape_tensor, i),
                   reshape_before_fc_shape_tensor[x_num_col_dims]);
          // If not set, test_trt_matmul_quant_dequant in trt 6015 will fail
          reshape_before_fc_shape_tensor[x_num_col_dims]->setType(
              nvinfer1::DataType::kINT32);
76 77
        }
      }
78 79
      filal_reshape_before_fc_shape_tensor =
          Concat(reshape_before_fc_shape_tensor);
80
    }
81

82 83
    auto* reshape_before_fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *before_fc);
84 85 86 87 88 89
    if (!engine_->with_dynamic_shape()) {
      reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
    } else {
      reshape_before_fc_layer->setInput(1,
                                        *filal_reshape_before_fc_shape_tensor);
    }
W
Wangzheee 已提交
90 91 92
    reshape_before_fc_layer->setName(
        ("fc_op_reshape_before_fc: Shuffle (Output: " + output_name + ")")
            .c_str());
93 94 95 96
    return reshape_before_fc_layer;
  }

  nvinfer1::ILayer* reshape_after_fc(nvinfer1::ITensor* after_fc,
97 98
                                     nvinfer1::Dims x_dim,
                                     int x_num_col_dims) {
99 100
    // add shuffle after fc
    nvinfer1::Dims reshape_after_fc_dim;
101
    reshape_after_fc_dim.nbDims = x_num_col_dims + 1;
102 103 104 105 106 107 108 109 110 111 112

    nvinfer1::ITensor* filal_reshape_after_fc_shape_tensor = nullptr;
    if (!engine_->with_dynamic_shape()) {
      for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) {
        reshape_after_fc_dim.d[i] = 0;
      }
    } else {
      std::vector<int> gather_indices(x_num_col_dims + 1);
      std::iota(gather_indices.begin(), gather_indices.end(), 0);
      filal_reshape_after_fc_shape_tensor =
          Gather(Shape(after_fc), gather_indices);
113
    }
114

115 116
    auto* reshape_after_fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *after_fc);
117 118 119 120 121
    if (!engine_->with_dynamic_shape()) {
      reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);
    } else {
      reshape_after_fc_layer->setInput(1, *filal_reshape_after_fc_shape_tensor);
    }
122 123 124
    return reshape_after_fc_layer;
  }

125
  void operator()(const framework::proto::OpDesc& op,
126 127
                  const framework::Scope& scope,
                  bool test_mode) override {
128
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
129
    framework::OpDesc op_desc(op, nullptr);
130
    auto output_name = op_desc.Output("Out").front();
131 132 133 134 135 136 137 138
    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
139
    // Declare inputs
140
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
W
Wangzheee 已提交
141
    auto x_dim = X->getDimensions();
142
    // Declare weights
143
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
144
    PADDLE_ENFORCE_NOT_NULL(
145 146 147
        Y_v,
        platform::errors::NotFound(
            "Can not find %s presistale var of fc in scope.", w_name));
148
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
149
    int x_num_col_dims =
P
Pei Yang 已提交
150
        op_desc.HasAttr("x_num_col_dims")
151
            ? BOOST_GET_CONST(int, op_desc.GetAttr("x_num_col_dims"))
P
Pei Yang 已提交
152
            : (op_desc.HasAttr("in_num_col_dims")
153
                   ? BOOST_GET_CONST(int, op_desc.GetAttr("in_num_col_dims"))
P
Pei Yang 已提交
154 155 156
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
157
            ? BOOST_GET_CONST(std::string, op_desc.GetAttr("activation_type"))
P
Pei Yang 已提交
158
            : "";
159
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
160
    // assigned from CPU memory, which can't be avoided.
161
    float* weight_data = nullptr;
162
    bool enable_int8 = op_desc.HasAttr("enable_int8");
163 164 165 166 167 168 169 170 171 172 173
    bool support_int8 = false;
    if (op_desc.HasAttr("support_int8")) {
      support_int8 = BOOST_GET_CONST(bool, op_desc.GetAttr("support_int8"));
    }
    float in_scale = 0;
    if (enable_int8 || support_int8) {
      if (enable_int8) {
        in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale"));
      } else {
        in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X"));
      }
174 175
      engine_->SetTensorDynamicRange(X, in_scale);
    }
176
    weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t);
N
nhzlx 已提交
177

178 179
    PADDLE_ENFORCE_EQ(Y_t->dims().size(),
                      2UL,
180 181 182 183
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
184 185 186 187 188 189 190 191 192 193
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

194 195
    auto regist_fc = [&](nvinfer1::ITensor* inputs,
                         int n_output,
196 197
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
198
      if (enable_int8 || support_int8) {
199
        // add conv layer
200 201 202
        float out_scale = 0;
        if (enable_int8) {
          PADDLE_ENFORCE_EQ(
203 204
              op_desc.HasAttr("out_threshold"),
              true,
205 206 207 208 209 210
              platform::errors::InvalidArgument(
                  "must have out threshold in fc layers in int8 mode"));
          out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
        } else {
          out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Out"));
        }
211
        nvinfer1::DimsHW nv_ksize(1, 1);
212 213 214 215 216 217 218
        auto* fc_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_,
                                                   Convolution,
                                                   *inputs,
                                                   n_output,
                                                   nv_ksize,
                                                   weight.get(),
                                                   bias.get());
W
Wangzheee 已提交
219 220 221
        fc_layer_int8->setName(
            ("fc_op_int8_conv1x1: Convolution (Output: " + output_name + ")")
                .c_str());
222
        engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale);
223 224
        auto* fc_after_reshape_int8 = reshape_after_fc(
            fc_layer_int8->getOutput(0), x_dim, x_num_col_dims);
225
        if (activation_type == "relu") {
W
Wangzheee 已提交
226
          fc_after_reshape_int8->setName(
227
              ("int8_reshape_after_fc: Shuffle (Output: " + output_name + ")")
W
Wangzheee 已提交
228
                  .c_str());
229 230
          engine_->SetTensorDynamicRange(fc_after_reshape_int8->getOutput(0),
                                         out_scale);
231 232 233 234 235 236 237 238 239
          nvinfer1::IActivationLayer* relu_layer_int8 =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_after_reshape_int8->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8,
                                   "relu_after_fc_shuffle",
                                   {output_name},
                                   test_mode);
240
        } else {
W
Wangzheee 已提交
241 242
          RreplenishLayerAndOutput(fc_after_reshape_int8,
                                   "fc_op_int8_reshape_after_fc: Shuffle",
243 244
                                   {output_name},
                                   test_mode);
245
        }
246
      } else {
247
        // add fc layer
248 249 250 251 252 253
        auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(engine_,
                                                    FullyConnected,
                                                    *inputs,
                                                    n_output,
                                                    weight.get(),
                                                    bias.get());
W
Wangzheee 已提交
254 255 256
        fc_layer_float->setName(
            ("fc_op_float: FullyConnected (Output: " + output_name + ")")
                .c_str());
257 258
        auto* fc_after_reshape_float = reshape_after_fc(
            fc_layer_float->getOutput(0), x_dim, x_num_col_dims);
259
        if (activation_type == "relu") {
W
Wangzheee 已提交
260
          fc_after_reshape_float->setName(
261
              ("float_reshape_after_fc: Shuffle (Output: " + output_name + ")")
W
Wangzheee 已提交
262
                  .c_str());
263 264 265 266 267 268 269 270 271
          nvinfer1::IActivationLayer* relu_layer_float =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_after_reshape_float->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_float,
                                   "relu_after_fc_shuffle",
                                   {output_name},
                                   test_mode);
272
        } else {
273 274 275 276
          RreplenishLayerAndOutput(fc_after_reshape_float,
                                   "shuffle_after_fc",
                                   {output_name},
                                   test_mode);
277
        }
278 279 280
      }
    };

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    bool transpose_y = false;
    if (op_desc.HasAttr("transpose_Y")) {
      transpose_y = BOOST_GET_CONST(bool, op_desc.GetAttr("transpose_Y"));
    }
    int weight_w, weight_h;
    if (!transpose_y) {
      std::vector<float> weight_data_tmp;
      weight_data_tmp.reserve(Y_t->numel());
      memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
      tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
      weight_w = n;
      weight_h = m;
    } else {
      weight_w = m;
      weight_h = n;
    }
    size_t n_output = weight_w;
298 299
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
300
                                  static_cast<size_t>(Y_t->numel())};
301 302
    weight.dims.assign({weight_w, weight_h});

303 304 305
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
306
      auto* b_v = scope.GetVar(op_desc.Input("Bias").front());
307
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
308
      bias_data = engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t);
309 310 311 312 313
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
314

315 316 317
    // Running the TRT Static Shape mode: x_num_col_dims-1
    if (!engine_->with_dynamic_shape()) {
      x_num_col_dims--;
318
    }
319 320
    // If use tensorrt'oss, the x_dim and x_num_col_dims need change, and can
    // not add Shuffle layer in ernie's multihead.
W
Wangzheee 已提交
321
    if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 &&
322
        x_dim.d[3] == 1 && x_num_col_dims == 2) {
323
      if (enable_int8 || support_int8) {
324 325
        // add conv1x1 layer
        nvinfer1::DimsHW nv_ksize(1, 1);
326 327 328 329 330 331 332
        auto* fc_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_,
                                                   Convolution,
                                                   *X,
                                                   n_output,
                                                   nv_ksize,
                                                   weight.get(),
                                                   bias.get());
333 334 335 336 337
        if (activation_type == "relu") {
          fc_layer_int8->setName(
              ("ernie_fc_op_int8: Convolution (Output: " + output_name + ")")
                  .c_str());
          PADDLE_ENFORCE_EQ(
338 339
              op_desc.HasAttr("out_threshold"),
              true,
340 341
              platform::errors::InvalidArgument(
                  "must have out threshold in fc layers in int8 mode"));
342 343 344 345 346 347 348
          float out_scale = 0;
          if (enable_int8) {
            out_scale =
                BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
          } else {
            out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Out"));
          }
349 350
          engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0),
                                         out_scale);
351 352 353 354 355 356 357 358 359
          nvinfer1::IActivationLayer* relu_layer_int8 =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_layer_int8->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8,
                                   "relu_after_ernie_fc_int8",
                                   {output_name},
                                   test_mode);
360 361 362
        } else {
          RreplenishLayerAndOutput(fc_layer_int8,
                                   "ernie_fc_op_int8: Convolution",
363 364
                                   {output_name},
                                   test_mode);
365 366 367 368 369 370 371 372
        }
      } else {
        // add fc layer
        auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *X, n_output, weight.get(), bias.get());
        if (activation_type == "relu") {
          fc_layer_float->setName(
              ("ernie_fc_op_float: (Output: " + output_name + ")").c_str());
373 374 375 376 377
          nvinfer1::IActivationLayer* relu_layer_float =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_layer_float->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
378
          RreplenishLayerAndOutput(relu_layer_float,
379 380
                                   "relu_after_ernie_fc_float",
                                   {output_name},
381 382
                                   test_mode);
        } else {
383 384
          RreplenishLayerAndOutput(
              fc_layer_float, "ernie_fc_op_float", {output_name}, test_mode);
385 386 387 388
        }
      }
    } else {  // need reshape input before and after fc
      PADDLE_ENFORCE_GT(
389 390
          x_dim.nbDims,
          x_num_col_dims,
391 392 393 394
          platform::errors::InvalidArgument(
              "Params and input dims mismatch. Paddle-TRT FC "
              "converter expects x_dim.nbDims > x_num_col_dims, but "
              "x_dim.nbDims : %d, x_num_col_dims : %d.",
395 396
              x_dim.nbDims,
              x_num_col_dims));
397 398 399
      auto* reshape_before_fc_layer =
          reshape_before_fc(X, x_dim, x_num_col_dims, output_name);
      auto* reshape_itensor = reshape_before_fc_layer->getOutput(0);
400
      if (enable_int8 || support_int8) {
401 402 403
        engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
      }
      regist_fc(reshape_itensor, n_output, weight, bias);
P
Pei Yang 已提交
404
    }
405 406 407 408 409 410 411
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
412
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);