/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" namespace paddle { namespace framework { class Scope; namespace proto { class OpDesc; } // namespace proto } // namespace framework } // namespace paddle namespace paddle { namespace inference { namespace tensorrt { /* * FC converter convert a MUL op in Fluid to a FC layer in TRT. */ class FcOpConverter : public OpConverter { public: nvinfer1::ILayer* reshape_before_fc(nvinfer1::ITensor* before_fc, nvinfer1::Dims x_dim, int x_num_col_dims, std::string output_name) { // add shuffle before fc nvinfer1::Dims reshape_before_fc_dim; reshape_before_fc_dim.nbDims = x_num_col_dims + 3; // padding shape "* x q x 1 x 1" nvinfer1::ITensor* filal_reshape_before_fc_shape_tensor = nullptr; if (!engine_->with_dynamic_shape()) { for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) { reshape_before_fc_dim.d[i] = 1; } for (int i = 0; i < x_dim.nbDims; i++) { if (i < x_num_col_dims) { reshape_before_fc_dim.d[i] = 0; } else { reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i]; } } } else { std::vector reshape_before_fc_shape_tensor; nvinfer1::ITensor* input_shape_tensor = Shape(before_fc); for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) { reshape_before_fc_shape_tensor.push_back(Add1DConstantLayer(1)); } for (int i = 0; i < x_dim.nbDims; i++) { if (i < x_num_col_dims) { reshape_before_fc_shape_tensor[i] = GetEleTensorOfShape(input_shape_tensor, i); } else { reshape_before_fc_shape_tensor[x_num_col_dims] = Prod(GetEleTensorOfShape(input_shape_tensor, i), reshape_before_fc_shape_tensor[x_num_col_dims]); // If not set, test_trt_matmul_quant_dequant in trt 6015 will fail reshape_before_fc_shape_tensor[x_num_col_dims]->setType( nvinfer1::DataType::kINT32); } } filal_reshape_before_fc_shape_tensor = Concat(reshape_before_fc_shape_tensor); } auto* reshape_before_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *before_fc); if (!engine_->with_dynamic_shape()) { reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim); } else { reshape_before_fc_layer->setInput(1, *filal_reshape_before_fc_shape_tensor); } reshape_before_fc_layer->setName( ("fc_op_reshape_before_fc: Shuffle (Output: " + output_name + ")") .c_str()); return reshape_before_fc_layer; } nvinfer1::ILayer* reshape_after_fc(nvinfer1::ITensor* after_fc, nvinfer1::Dims x_dim, int x_num_col_dims) { // add shuffle after fc nvinfer1::Dims reshape_after_fc_dim; reshape_after_fc_dim.nbDims = x_num_col_dims + 1; nvinfer1::ITensor* filal_reshape_after_fc_shape_tensor = nullptr; if (!engine_->with_dynamic_shape()) { for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) { reshape_after_fc_dim.d[i] = 0; } } else { std::vector gather_indices(x_num_col_dims + 1); std::iota(gather_indices.begin(), gather_indices.end(), 0); filal_reshape_after_fc_shape_tensor = Gather(Shape(after_fc), gather_indices); } auto* reshape_after_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *after_fc); if (!engine_->with_dynamic_shape()) { reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim); } else { reshape_after_fc_layer->setInput(1, *filal_reshape_after_fc_shape_tensor); } return reshape_after_fc_layer; } void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias"; framework::OpDesc op_desc(op, nullptr); auto output_name = op_desc.Output("Out").front(); auto input_names = op_desc.InputNames(); bool with_bias = input_names.size() >= 3; std::string w_name = "Y"; std::string i_name = "X"; if (with_bias) { w_name = "W"; i_name = "Input"; } // Declare inputs auto* X = engine_->GetITensor(op_desc.Input(i_name).front()); auto x_dim = X->getDimensions(); // Declare weights auto* Y_v = scope.FindVar(op_desc.Input(w_name).front()); PADDLE_ENFORCE_NOT_NULL( Y_v, platform::errors::NotFound( "Can not find %s presistale var of fc in scope.", w_name)); auto* Y_t = Y_v->GetMutable(); int x_num_col_dims = op_desc.HasAttr("x_num_col_dims") ? BOOST_GET_CONST(int, op_desc.GetAttr("x_num_col_dims")) : (op_desc.HasAttr("in_num_col_dims") ? BOOST_GET_CONST(int, op_desc.GetAttr("in_num_col_dims")) : 1); const std::string activation_type = op_desc.HasAttr("activation_type") ? BOOST_GET_CONST(std::string, op_desc.GetAttr("activation_type")) : ""; // This may trigger a GPU->CPU copy, because TRT's weight can only be // assigned from CPU memory, which can't be avoided. float* weight_data = nullptr; bool enable_int8 = op_desc.HasAttr("enable_int8"); bool support_int8 = false; if (op_desc.HasAttr("support_int8")) { support_int8 = BOOST_GET_CONST(bool, op_desc.GetAttr("support_int8")); } float in_scale = 0; if (enable_int8 || support_int8) { if (enable_int8) { in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")); } else { in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X")); } engine_->SetTensorDynamicRange(X, in_scale); } weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t); PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL, platform::errors::InvalidArgument( "The fc's weight should be a matrix with 2 dims, but " "it's %d-dimensional.", Y_t->dims().size())); // a matrix int m = Y_t->dims()[0]; int n = Y_t->dims()[1]; auto tranpose_weight = [](const float* src, float* dst, int m, int n) { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dst[j * m + i] = src[i * n + j]; } } }; auto regist_fc = [&](nvinfer1::ITensor* inputs, int n_output, TensorRTEngine::Weight& weight, TensorRTEngine::Weight& bias) { if (enable_int8 || support_int8) { // add conv layer float out_scale = 0; if (enable_int8) { PADDLE_ENFORCE_EQ( op_desc.HasAttr("out_threshold"), true, platform::errors::InvalidArgument( "must have out threshold in fc layers in int8 mode")); out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold")); } else { out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Out")); } nvinfer1::DimsHW nv_ksize(1, 1); auto* fc_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output, nv_ksize, weight.get(), bias.get()); fc_layer_int8->setName( ("fc_op_int8_conv1x1: Convolution (Output: " + output_name + ")") .c_str()); engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale); auto* fc_after_reshape_int8 = reshape_after_fc( fc_layer_int8->getOutput(0), x_dim, x_num_col_dims); if (activation_type == "relu") { fc_after_reshape_int8->setName( ("int8_reshape_after_fc: Shuffle (Output: " + output_name + ")") .c_str()); engine_->SetTensorDynamicRange(fc_after_reshape_int8->getOutput(0), out_scale); nvinfer1::IActivationLayer* relu_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_after_reshape_int8->getOutput(0)), nvinfer1::ActivationType::kRELU); RreplenishLayerAndOutput(relu_layer_int8, "relu_after_fc_shuffle", {output_name}, test_mode); } else { RreplenishLayerAndOutput(fc_after_reshape_int8, "fc_op_int8_reshape_after_fc: Shuffle", {output_name}, test_mode); } } else { // add fc layer auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs, n_output, weight.get(), bias.get()); fc_layer_float->setName( ("fc_op_float: FullyConnected (Output: " + output_name + ")") .c_str()); auto* fc_after_reshape_float = reshape_after_fc( fc_layer_float->getOutput(0), x_dim, x_num_col_dims); if (activation_type == "relu") { fc_after_reshape_float->setName( ("float_reshape_after_fc: Shuffle (Output: " + output_name + ")") .c_str()); nvinfer1::IActivationLayer* relu_layer_float = TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_after_reshape_float->getOutput(0)), nvinfer1::ActivationType::kRELU); RreplenishLayerAndOutput(relu_layer_float, "relu_after_fc_shuffle", {output_name}, test_mode); } else { RreplenishLayerAndOutput(fc_after_reshape_float, "shuffle_after_fc", {output_name}, test_mode); } } }; bool transpose_y = false; if (op_desc.HasAttr("transpose_Y")) { transpose_y = BOOST_GET_CONST(bool, op_desc.GetAttr("transpose_Y")); } int weight_w, weight_h; if (!transpose_y) { std::vector weight_data_tmp; weight_data_tmp.reserve(Y_t->numel()); memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float)); tranpose_weight(weight_data_tmp.data(), weight_data, m, n); weight_w = n; weight_h = m; } else { weight_w = m; weight_h = n; } size_t n_output = weight_w; TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT, static_cast(weight_data), static_cast(Y_t->numel())}; weight.dims.assign({weight_w, weight_h}); float* bias_data = nullptr; int bias_num = 0; if (with_bias) { auto* b_v = scope.GetVar(op_desc.Input("Bias").front()); auto* b_t = b_v->GetMutable(); bias_data = engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t); bias_num = b_t->numel(); } TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, static_cast(bias_data), static_cast(bias_num)}; // Running the TRT Static Shape mode: x_num_col_dims-1 if (!engine_->with_dynamic_shape()) { x_num_col_dims--; } // If use tensorrt'oss, the x_dim and x_num_col_dims need change, and can // not add Shuffle layer in ernie's multihead. if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 && x_dim.d[3] == 1 && x_num_col_dims == 2) { if (enable_int8 || support_int8) { // add conv1x1 layer nvinfer1::DimsHW nv_ksize(1, 1); auto* fc_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *X, n_output, nv_ksize, weight.get(), bias.get()); if (activation_type == "relu") { fc_layer_int8->setName( ("ernie_fc_op_int8: Convolution (Output: " + output_name + ")") .c_str()); PADDLE_ENFORCE_EQ( op_desc.HasAttr("out_threshold"), true, platform::errors::InvalidArgument( "must have out threshold in fc layers in int8 mode")); float out_scale = 0; if (enable_int8) { out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold")); } else { out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Out")); } engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale); nvinfer1::IActivationLayer* relu_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_layer_int8->getOutput(0)), nvinfer1::ActivationType::kRELU); RreplenishLayerAndOutput(relu_layer_int8, "relu_after_ernie_fc_int8", {output_name}, test_mode); } else { RreplenishLayerAndOutput(fc_layer_int8, "ernie_fc_op_int8: Convolution", {output_name}, test_mode); } } else { // add fc layer auto* fc_layer_float = TRT_ENGINE_ADD_LAYER( engine_, FullyConnected, *X, n_output, weight.get(), bias.get()); if (activation_type == "relu") { fc_layer_float->setName( ("ernie_fc_op_float: (Output: " + output_name + ")").c_str()); nvinfer1::IActivationLayer* relu_layer_float = TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_layer_float->getOutput(0)), nvinfer1::ActivationType::kRELU); RreplenishLayerAndOutput(relu_layer_float, "relu_after_ernie_fc_float", {output_name}, test_mode); } else { RreplenishLayerAndOutput( fc_layer_float, "ernie_fc_op_float", {output_name}, test_mode); } } } else { // need reshape input before and after fc PADDLE_ENFORCE_GT( x_dim.nbDims, x_num_col_dims, platform::errors::InvalidArgument( "Params and input dims mismatch. Paddle-TRT FC " "converter expects x_dim.nbDims > x_num_col_dims, but " "x_dim.nbDims : %d, x_num_col_dims : %d.", x_dim.nbDims, x_num_col_dims)); auto* reshape_before_fc_layer = reshape_before_fc(X, x_dim, x_num_col_dims, output_name); auto* reshape_itensor = reshape_before_fc_layer->getOutput(0); if (enable_int8 || support_int8) { engine_->SetTensorDynamicRange(reshape_itensor, in_scale); } regist_fc(reshape_itensor, n_output, weight, bias); } } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);