fc_op.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

27 28 29 30 31 32 33 34 35 36
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
37
                  const framework::Scope& scope, bool test_mode) override {
38
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
39
    framework::OpDesc op_desc(op, nullptr);
40
    auto output_name = op_desc.Output("Out").front();
41 42 43 44 45 46 47 48
    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
49
    // Declare inputs
50
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
W
Wangzheee 已提交
51
    auto x_dim = X->getDimensions();
52
    // Declare weights
53
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
54 55 56
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound(
                 "Can not find %s presistale var of fc in scope.", w_name));
57
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
58
    int x_num_col_dims =
P
Pei Yang 已提交
59
        op_desc.HasAttr("x_num_col_dims")
60
            ? BOOST_GET_CONST(int, op_desc.GetAttr("x_num_col_dims"))
P
Pei Yang 已提交
61
            : (op_desc.HasAttr("in_num_col_dims")
62
                   ? BOOST_GET_CONST(int, op_desc.GetAttr("in_num_col_dims"))
P
Pei Yang 已提交
63 64 65
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
66
            ? BOOST_GET_CONST(std::string, op_desc.GetAttr("activation_type"))
P
Pei Yang 已提交
67
            : "";
68
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
69
    // assigned from CPU memory, which can't be avoided.
70
    float* weight_data = nullptr;
71
    bool enable_int8 = op_desc.HasAttr("enable_int8");
72
    float in_scale = 0.;
73 74
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
75
      CHECK(op_desc.HasAttr(i_name + "_scale"));
76
      in_scale =
77
          BOOST_GET_CONST(float, op_desc.GetAttr(i_name + "_scale")) * 127;
78
      auto weight_scale =
79
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
80 81 82 83 84 85 86 87
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
88

89 90 91 92 93
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL,
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
94
    size_t n_output = Y_t->dims()[1];
N
nhzlx 已提交
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];

    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

    auto regist_fc = [&](nvinfer1::ITensor* inputs, int n_output,
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
110
      if (enable_int8) {
111
        // add conv layer
112 113 114 115 116 117 118
        PADDLE_ENFORCE_EQ(
            op_desc.HasAttr("out_threshold"), true,
            platform::errors::InvalidArgument(
                "must have out threshold in fc layers in int8 mode"));
        float out_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
        nvinfer1::DimsHW nv_ksize(1, 1);
119 120 121 122 123 124 125 126 127 128 129 130 131 132
        auto* fc_layer_int8 =
            TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                 nv_ksize, weight.get(), bias.get());
        engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale);
        if (activation_type == "relu") {
          nvinfer1::IActivationLayer* relu_layer_int8 = TRT_ENGINE_ADD_LAYER(
              engine_, Activation, *(fc_layer_int8->getOutput(0)),
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8, "relu_after_fc_shuffle",
                                   {output_name}, test_mode);
        } else {
          RreplenishLayerAndOutput(fc_layer_int8, "shuffle_after_fc",
                                   {output_name}, test_mode);
        }
133
      } else {
134 135 136 137 138 139 140 141
        // add fc layer
        auto* fc_layer_before =
            TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs, n_output,
                                 weight.get(), bias.get());
        fc_layer_before->setName(
            ("fc_layer_before(Output: " + output_name + ")").c_str());
        // add shuffle after fc
        nvinfer1::Dims reshape_after_fc_dim;
W
Wangzheee 已提交
142 143 144 145 146 147 148
        if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 &&
            x_dim.d[2] == 1 && x_dim.d[3] == 1 && x_num_col_dims == 1) {
          // If use tensorrt'oss, the x_dim and x_num_col_dims need change
          reshape_after_fc_dim.nbDims = 4;
        } else {
          reshape_after_fc_dim.nbDims = x_num_col_dims + 1;
        }
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) {
          reshape_after_fc_dim.d[i] = 0;
        }
        auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(
            engine_, Shuffle, *fc_layer_before->getOutput(0));
        fc_layer_float->setReshapeDimensions(reshape_after_fc_dim);
        if (activation_type == "relu") {
          nvinfer1::IActivationLayer* relu_layer_float = TRT_ENGINE_ADD_LAYER(
              engine_, Activation, *(fc_layer_float->getOutput(0)),
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_float, "relu_after_fc_shuffle",
                                   {output_name}, test_mode);
        } else {
          RreplenishLayerAndOutput(fc_layer_float, "shuffle_after_fc",
                                   {output_name}, test_mode);
        }
165 166 167 168 169 170 171
      }
    };

    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(Y_t->numel());
    memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
N
nhzlx 已提交
172

173 174
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
175
                                  static_cast<size_t>(Y_t->numel())};
176 177
    weight.dims.assign({n, m});

178 179 180
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
181
      auto* b_v = scope.GetVar(op_desc.Input("Bias").front());
182 183 184 185 186 187 188 189
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
190

191 192 193
    // Running the TRT Static Shape mode: x_num_col_dims-1
    if (!engine_->with_dynamic_shape()) {
      x_num_col_dims--;
194
    }
W
Wangzheee 已提交
195 196 197 198 199
    // If use tensorrt'oss, the x_dim and x_num_col_dims need change
    if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 &&
        x_dim.d[2] == 1 && x_dim.d[3] == 1 && x_num_col_dims == 2) {
      x_num_col_dims = 1;
    }
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    PADDLE_ENFORCE_GT(
        x_dim.nbDims, x_num_col_dims,
        platform::errors::InvalidArgument(
            "Params and input dims mismatch. Paddle-TRT FC "
            "converter expects x_dim.nbDims > x_num_col_dims, but "
            "x_dim.nbDims : %d, x_num_col_dims : %d.",
            x_dim.nbDims, x_num_col_dims));
    // add shuffle before fc
    nvinfer1::Dims reshape_before_fc_dim;
    reshape_before_fc_dim.nbDims = x_num_col_dims + 3;
    // padding shape "* x q x 1 x 1"
    for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
      reshape_before_fc_dim.d[i] = 1;
    }
    for (int i = 0; i < x_dim.nbDims; i++) {
      if (i < x_num_col_dims) {
        reshape_before_fc_dim.d[i] = 0;
217
      } else {
218 219 220
        if (x_dim.d[i] < 0) {
          reshape_before_fc_dim.d[x_num_col_dims] = -1;
          break;
P
Pei Yang 已提交
221
        }
222
        reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i];
P
Pei Yang 已提交
223
      }
224 225 226 227 228 229 230 231
    }
    auto* reshape_before_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
    reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
    reshape_before_fc_layer->setName(
        ("shuffle_before_fc(Output: " + output_name + ")").c_str());
    auto* reshape_itensor = reshape_before_fc_layer->getOutput(0);
    if (enable_int8) {
      engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
P
Pei Yang 已提交
232
    }
233
    regist_fc(reshape_itensor, n_output, weight, bias);
234 235 236 237 238 239 240
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
241
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);